首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1971篇
  免费   160篇
  国内免费   317篇
化学   2147篇
晶体学   3篇
力学   39篇
综合类   9篇
数学   7篇
物理学   243篇
  2023年   15篇
  2022年   30篇
  2021年   34篇
  2020年   49篇
  2019年   46篇
  2018年   55篇
  2017年   73篇
  2016年   98篇
  2015年   67篇
  2014年   89篇
  2013年   221篇
  2012年   121篇
  2011年   125篇
  2010年   109篇
  2009年   125篇
  2008年   132篇
  2007年   148篇
  2006年   105篇
  2005年   108篇
  2004年   94篇
  2003年   93篇
  2002年   69篇
  2001年   51篇
  2000年   36篇
  1999年   40篇
  1998年   29篇
  1997年   41篇
  1996年   39篇
  1995年   51篇
  1994年   45篇
  1993年   27篇
  1992年   29篇
  1991年   19篇
  1990年   8篇
  1989年   2篇
  1988年   11篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1966年   1篇
排序方式: 共有2448条查询结果,搜索用时 15 毫秒
1.
A simple method for nanocrystalline cellulose (NCC)/fluorinated polyacrylate was developed by RAFT‐mediated surfactant‐free emulsion polymerization, in which the nanocomposites formed a core‐shell spherical morphology. The influence of the content of NCC‐g‐(PAA‐b‐PHFBA) (AA was acrylic acid, HFBA was hexafluorobutyl acrylate) on the properties of latex and film were systematically studied. The monomer conversion, the tensile strength, and water–oil repellency of film increased first and then decreased, the latex particle size decreased first and then decreased, when the content of NCC‐g‐(PAA‐b‐PHFBA) increased from 1 to 6 wt %. Elongation at break and thermal stability distinctly decreased when the content of NCC‐g‐(PAA‐b‐PHFBA) gradually increased. XPS showed that the fluorine‐containing groups well concentrated at the film–air interfaces during the annealing process. SEM analysis revealed that the treated fiber had a rugged surface, and the treated fabric had an excellent water repellency. In addition, this green grafting method in water offered a new perspective for the fabrication of exceptional NCC‐based nanocomposites with NCC as the core and also helped to promote the potential applicability of NCC in a range of multipurpose applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1305–1314  相似文献   
2.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
3.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   
4.
Cationic emulsions of triblock copolymer particles comprising a poly(n‐butyl acrylate) (PnBA) central block and polystyrene (PS) outer blocks were synthesized by activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP). Difunctional ATRP initiator, ethylene bis(2‐bromoisobutyrate) (EBBiB), was used as initiator to synthesize the ABA type poly(styrene‐bn‐butyl acrylate‐b‐styrene) (PS‐PnBA‐PS) triblock copolymer. The effects of ligand and cationic surfactant on polymerizations were also discussed. Gel permeation chromatography (GPC) was used to characterize the molecular weight (Mn) and molecular weight distribution (MWD) of the resultant triblock copolymers. Particle size and particle size distribution of resulted latexes were characterized by dynamic light scattering (DLS). The resultant latexes showed good colloidal stability with average particle size around 100–300 nm in diameter. Glass transition temperature (Tg) of copolymers was studied by differential scanning calorimetry (DSC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 611–620  相似文献   
5.
This study investigated vitamin K1 (VK1) distribution following intravenous vitamin K1–fat emulsion (VK1–FE) administration and compared it with that after VK1 injection. Rats were intravenously injected with VK1–FE or VK1. The organ and tissue VK1 concentrations were determined using high‐performance liquid chromatography method at 0.5, 2 and 4 h to determine distribution, equilibrium and elimination phases, respectively. In the VK1–FE group, the plasma, heart and spleen VK1 concentrations decreased over time. However, other organs like liver, lung, kidney, muscle and testis, reached peak VK1 concentrations at 2 h. In the VK1 injection group, the liver VK1 concentrations were significantly higher than those in other organs at the three time points. However, VK1 concentrations in the other organs peaked at 2 h. In addition, in VK1–FE group, the heart, spleen and lung VK1 concentrations were significantly higher than those in the VK1 injection group at the three time points, and the liver VK1 concentration was significantly higher than that in the VK1 injection group at 4 h. The VK1 amount was greatest in the liver compared with the other organs. Thus, the liver is the primary organ for VK1 distribution. The distribution of VK1 is more rapid when injected as VK1–FE than as VK1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
7.
The batch emulsion copolymerization of vinyl acetate with different vinyl silane functional monomers (vinyl trimethoxysilane [VTMS], vinyl triethoxysilane [VTES], and vinyl silanetriol [VSTO]) is studied. The nature of the silane strongly affects the development of the microstructure and crosslinking ability of the latexes. A combination of techniques (Soxhlet extraction, centrifugation, assymetric‐flow field flow fractionation AF4/MALS/RI) shows that the factor controlling the molar mass and crosslinking density is the degree of hydrolysis of the alkoxysilane, producing higher molar masses and degrees of crosslinking when the degree of hydrolysis is high. Thus, the copolymer containing VSTO produced a very crosslinked latex, the one with VTMS produced a latex with a low degree of crosslinking in the wet state that can yield high degrees of crosslinking upon drying, and the latex with VTES do not produce significant amounts of crosslinking neither before nor after drying.  相似文献   
8.
《Arabian Journal of Chemistry》2020,13(11):7875-7885
This research focuses on implementing the low cost and rapid front face synchronous fluorescence (SyFS) in order to ensure the quality assurance of Greek milk. Specifically, samples originated from the Greek domestic production of goat, sheep, cow, as well as foreign cow milk samples and adulterated cow milk samples. SyFS spectra were acquired in the excitation area of 250–500 nm with (Δλ)= 100 nm. Greek and foreign cow milk samples were differentiated based on intensity variations at wavelengths 350–515 nm, 540–579 nm, and 580–600 nm. The emissions at these wavelength positions correspond to tryptophan, vitamin A, and riboflavin. The supervised model with 94 samples exhibited p-value = 7,98E-11, RMSEE= 0,29171, RMSEcv= 0,29284 and RMSEP= 0,98013, AUROC for Greek samples= 0,61 and AUROC for foreign= 0,85. We differentiated milk samples according to the animal type with PCA and OPLS-DA models of 107 samples exhibiting RMSEE= 0,225842, RMSEcv= 0,228054 and RMSEP= 0,518635, AUROC for sheep samples= 0,99, AUROC for goat samples= 0,98 and AUROC for cow samples= 0,96. In fact, the emission band 350–591 nm characterized sheep milk and corresponds to aminoacids and fatty acids, cow milk was related to the 350–600 nm emission band related to the b-carotene and to the goat milk the emission bands 350–505 nm and 520–600 nm were attributed to tryptophan, NADH and Rivoflabin. Finally, we investigated whether SyFS coupled with chemometrics may provide preliminary evidence on adulterated cow milk samples. All models were validated with permutation testing, p-values and ROC curves.  相似文献   
9.
The adsorption of particles to air–aqueous interfaces is vital in many applications, such as mineral flotation and the stabilization of food foams. The forces in the system determine whether a particle will attach to an air–aqueous interface. The forces between a particle and an air–aqueous interface are influenced by Derjaguin–Landau–Verwey–Overbeek forces (i.e. van der Waals and electrostatic forces), non–Derjaguin–Landau–Verwey–Overbeek forces (e.g. hydrophobic, hydrodynamic, structural, and capillary forces), liquid drainage, and liquid flow. As an air–aqueous interface can be deformed by a particle, the forces measured between an air–aqueous interface and a particle can differ from those measured between two hard surfaces separated by liquid. The presence of a film at an air–aqueous interface can also change the forces.  相似文献   
10.
Polymerization-induced self-assembly(PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl(n BHMA) and tert-butyl(t BHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of n BHMA and t BHMA employing poly(ethylene glycol) macromolecular chain transfer agents(macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for t BHMA, which has a higher water solubility than that of n BHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号