首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1040篇
  免费   79篇
  国内免费   110篇
化学   731篇
力学   42篇
综合类   89篇
数学   178篇
物理学   189篇
  2024年   2篇
  2023年   13篇
  2022年   14篇
  2021年   41篇
  2020年   48篇
  2019年   37篇
  2018年   23篇
  2017年   41篇
  2016年   40篇
  2015年   44篇
  2014年   37篇
  2013年   70篇
  2012年   50篇
  2011年   57篇
  2010年   41篇
  2009年   93篇
  2008年   69篇
  2007年   83篇
  2006年   60篇
  2005年   54篇
  2004年   45篇
  2003年   42篇
  2002年   26篇
  2001年   30篇
  2000年   21篇
  1999年   27篇
  1998年   13篇
  1997年   17篇
  1996年   15篇
  1995年   8篇
  1994年   16篇
  1993年   12篇
  1992年   10篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1983年   3篇
  1981年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有1229条查询结果,搜索用时 31 毫秒
1.
The present research was to investigate the effects of skimmianine (SK) in four non-small cell lung cancer (NSCLC) cells. We found that SK can significantly inhibit the growth of NSCLC cells and markedly induce apoptosis in NSCLC cells. The effects of growth inhibition and apoptosis induction were in a concentration–response relationship and caspase-dependent manner.  相似文献   
2.
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and characterized by cognitive and memory impairments. Emerging evidence suggests that the extracellular matrix (ECM) in the brain plays an important role in the etiology of AD. It has been detected that the levels of ECM proteins have changed in the brains of AD patients and animal models. Some ECM components, for example, elastin and heparan sulfate proteoglycans, are considered to promote the upregulation of extracellular amyloid-beta (Aβ) proteins. In addition, collagen VI and laminin are shown to have interactions with Aβ peptides, which might lead to the clearance of those peptides. Thus, ECM proteins are involved in both amyloidosis and neuroprotection in the AD process. However, the molecular mechanism of neuronal ECM proteins on the pathophysiology of AD remains elusive. More investigation of ECM proteins with AD pathogenesis is needed, and this may lead to novel therapeutic strategies and biomarkers for AD.  相似文献   
3.
4.
5.
Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification.  相似文献   
6.
Protein–protein interactions (PPIs) play essential roles in many biological processes. In protein–protein interaction networks, hubs involve in numbers of PPIs and may constitute an important source of drug targets. The intrinsic disorder proteins (IDPs) with unstable structures can promote the promiscuity of hubs and also involve in many disease pathways, so they also could serve as potential drug targets. Moreover, proteins with similar functions measured by semantic similarity of gene ontology (GO) terms tend to interact with each other. Here, the relationship between hub proteins and drug targets based on GO terms and intrinsic disorder was explored. The semantic similarities of GO terms and genes between two proteins, and the rate of intrinsic disorder residues of each protein were extracted as features to characterize the functional similarity between two interacting proteins. Only using 8 feature variables, prediction models by support vector machine (SVM) were constructed to predict PPIs. The accuracy of the model on the PPI data from human hub proteins is as high as 83.72%, which is very promising compared with other PPI prediction models with hundreds or even thousands of features. Then, 118 of 142 PPIs between hubs are correctly predicted that the two interacting proteins are targets of the same drugs. The results indicate that only 8 functional features are fully efficient for representing PPIs. In order to identify new targets from IDP dataset, the PPIs between hubs and IDPs are predicted by the SVM model and the model yields a prediction accuracy of 75.84%. Further research proves that 3 of 5 PPIs between hubs and IDPs are correctly predicted that the two interacting proteins are targets of the same drugs. All results demonstrate that the model with only 8-dimensional features from GO terms and intrinsic disorder still gives a good performance in predicting PPIs and further identifying drug targets.  相似文献   
7.
8.
Dysregulated and reprogrammed metabolism are one of the most important characteristics of cancer, and exploiting cancer cell metabolism can aid in understanding the diverse clinical outcomes for patients. To investigate the differences in metabolic pathways among patients with acute myeloid leukemia (AML) and differential survival outcomes, we systematically conducted microarray data analysis of the metabolic gene expression profiles from 384 patients available from the Gene Expression Omnibus and Cancer Genome Atlas databases. Pathway enrichment analysis of differentially expressed genes (DEGs) showed that the metabolic differences between low-risk and high-risk patients mainly existed in two pathways: biosynthesis of unsaturated fatty acids and oxidative phosphorylation. Using the gene-pathway bipartite network, 62 metabolic genes were identified from 272 DEGs involved in 88 metabolic pathways. Based on the expression patterns of the 62 genes, patients with shorter overall survival (OS) durations in the training set (hazard ratio (HR) = 1.58, p = 0.038) and in two test sets (HR = 1.69 and 1.56 and p = 0.089 and 0.029, respectively) were well discriminated by hierarchical clustering analysis. Notably, the expression profiles of ALAS2, BCAT1, BLVRB, and HK3 showed distinct differences between the low-risk and high-risk patients. In addition, models for predicting the OS outcome of AML from the 62 gene signatures achieved improved performance compared with previous studies. In conclusion, our findings reveal significant differences in metabolic processes of patients with AML with diverse survival durations and provide valuable information for clinical translation.  相似文献   
9.
RNA-seq data are challenging existing omics data analytics for its volume and complexity. Although quite a few computational models were proposed from different standing points to conduct differential expression (D.E.) analysis, almost all these methods do not provide a rigorous feature selection for high-dimensional RNA-seq count data. Instead, most or even all genes are invited into differential calls no matter they have real contributions to data variations or not. Thus, it would inevitably affect the robustness of D.E. analysis and lead to the increase of false positive ratios.In this study, we presented a novel feature selection method: nonnegative singular value approximation (NSVA) to enhance RNA-seq differential expression analysis by taking advantage of RNA-seq count data's non-negativity. As a variance-based feature selection method, it selects genes according to its contribution to the first singular value direction of input data in a data-driven approach. It demonstrates robustness to depth bias and gene length bias in feature selection in comparison with its five peer methods. Combining with state-of-the-art RNA-seq differential expression analysis, it contributes to enhancing differential expression analysis by lowering false discovery rates caused by the biases. Furthermore, we demonstrated the effectiveness of the proposed feature selection by proposing a data-driven differential expression analysis: NSVA-seq, besides conducting network marker discovery.  相似文献   
10.
The CRISPR/Cas system is one of the most powerful tools for gene editing. However, approaches for precise control of genome editing and regulatory events are still desirable. Here, we report the spatiotemporal and efficient control of CRISPR/Cas9- and Cas12a-mediated editing with conformationally restricted guide RNAs (gRNAs). This approach relied on only two or three pre-installed photo-labile substituents followed by an intramolecular cyclization, representing a robust synthetic method in comparison to the heavily modified linear gRNAs that often require extensive screening and time-consuming optimization. This tactic could direct the precise cleavage of the genes encoding green fluorescent protein (GFP) and the vascular endothelial growth factor A (VEGFA) protein within a predefined cutting region without notable editing leakage in live cells. We also achieved light-mediated myostatin (MSTN) gene editing in embryos, wherein a new bow-knot-type gRNA was constructed with excellent OFF/ON switch efficiency. Overall, our work provides a significant new strategy in CRISPR/Cas editing with modified circular gRNAs to precisely manipulate where and when genes are edited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号