首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   110篇
  国内免费   119篇
化学   258篇
数学   2篇
物理学   109篇
  2023年   26篇
  2022年   10篇
  2021年   32篇
  2020年   34篇
  2019年   26篇
  2018年   29篇
  2017年   21篇
  2016年   14篇
  2015年   10篇
  2014年   12篇
  2013年   38篇
  2012年   24篇
  2011年   32篇
  2010年   17篇
  2009年   10篇
  2008年   9篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  1999年   5篇
排序方式: 共有369条查询结果,搜索用时 62 毫秒
1.
Hu  Duo-Duo  Gao  Qian  Dai  Jing-Cheng  Cui  Ru  Li  Yuan-Bo  Li  Yuan-Ming  Zhou  Xiao-Guo  Bian  Kang-Jie  Wu  Bing-Bing  Zhang  Kai-Fan  Wang  Xi-Sheng  Li  Yan 《中国科学:化学(英文版)》2022,65(4):753-761
Science China Chemistry - A light-induced, nickel-catalyzed three-component arylsulfonation of 1,3-enynes in the absence of photocatalyst is reported. This methodology exhibited mild conditions,...  相似文献   
2.
3.
《Tetrahedron》2019,75(38):130514
This study presents the synthesis, characterization, and electrochemical properties of four new dialkoxymethanofullerenes, as well as their performance in organic solar cells (OSCs) devices. Dialkoxymethanofullerenes were synthesized in 27%–32% yield by thermolysis of dialkoxyoxadiazolines and reaction with C60 under reflux in toluene. The prepared compounds were then characterized and used for the first time as electron-acceptor materials in thin-film bulk heterojunction OSCs with PBTZT-stat-BDTT-8 as the electron donor material. The devices made with ethoxy-hexyloxymethanofullerene and methoxy-hexyloxymethanofullerene exhibited optimal power conversion efficiencies (PCEs) of 3.79% and 4.65%, with open-circuit voltage of 0.832 and 0.831 V, respectively. In contrast, the devices made with ethoxy-ethoxymethanofullerene and methoxy-ethoxymethanofullerene exhibited very low PCEs of <0.01% for both, indicating a large impact of the substituents on device performance.  相似文献   
4.
Hydrogen generation from formic acid (FA) has received significant attention.The challenge is to obtain a highly active catalyst under mild conditions for practical applications.Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst,therein the FeOx coverage was precisely controlled by ALD cycles.Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs).X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy.In the FA dehydrogenation reaction,the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity,and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one.The improved activities were in a volcanoshape as a function of the number of FeOx ALD cycles,indicating the coverage of FeOx is critical for the optimized activity.In summary,simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction.  相似文献   
5.
《Mendeleev Communications》2023,33(4):466-468
The syntheses and characterization of novel propargyl ethers of N-(hydroxymethyl)nitramines that contain from one to four nitramine units are reported. All nitramine-functionalized ethers were well characterized by IR and multinuclear NMR spectroscopy as well as CHN analysis, and the X-ray crystal structures of two of them are described. For ethers bearing two or three nitramine units, the standard molar enthalpies of formation at 298.15 K were determined from the experimental standard molar energies of combustion in oxygen measured by static bomb combustion calorimetry  相似文献   
6.
《Mendeleev Communications》2023,33(4):494-496
A new method for selective C(5)–H alkylation of 2-substituted furans with tertiary and secondary alkyl bromides under photoinduced by visible light (∼460 nm) palladium catalysis has been developed. The method is relied on the use of available Pd(PPh3)4 catalyst under mild conditions (30 ± 5 °C, K2CO3 as base), tolerates to various functional groups in furanic substrates and provides from good to excellent yields of alkylated products.  相似文献   
7.
《中国化学快报》2023,34(11):108263
The sluggish conversion kinetics and shuttle effect of lithium polysulfides (LiPSs) severely hamper the commercialization of lithium–sulfur batteries. Numerous electrocatalysts have been used to address these issues, amongst which, transition metal dichalcogenides have shown excellent catalytic performance in the study of lithium–sulfur batteries. Note that dichalcogenides in different phases have different catalytic properties, and such catalytic materials in different phases have a prominent impact on the performance of lithium–sulfur batteries. Herein, 1T-phase rich MoSe2 (T-MoSe2) nanosheets are synthesized and used to catalyze the conversion of LiPSs. Compared with the 2H-phase rich MoSe2 (H-MoSe2) nanosheets, the T-MoSe2 nanosheets significantly accelerate the liquid phase transformation of LiPSs and the nucleation process of Li2S. In-situ Raman and X-ray photoelectron spectroscopy (XPS) find that T-MoSe2 effectively captures LiPSs through the formation of Mo-S and Li-Se bonds, and simultaneously achieves fast catalytic conversion of LiPSs. The lithium–sulfur batteries with T-MoSe2 functionalized separators display a fantastic rate performance of 770.1 mAh/g at 3 C and wonderful cycling stability, with a capacity decay rate as low as 0.065% during 400 cycles at 1 C. This work offers a novel perspective for the rational design of selenide electrocatalysts in lithium–sulfur chemistry.  相似文献   
8.
Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3V2(PO4)3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.  相似文献   
9.
Tuning the coordination environments of metal single atoms (M1) in single-atom catalysts has shown large impacts on catalytic activity and stability but often barely on selectivity in thermocatalysis. Here, we report that simultaneously regulating both Rh1 atoms and ZrO2 support with alkali ions (e.g., Na) enables efficient switching of the reaction products from nearly 100 % CH4 to above 99 % CO in CO2 hydrogenation in a wide temperature range (240–440 °C) along with a record high activity of 9.4 molCO gRh−1 h−1 at 300 °C and long-term stability. In situ spectroscopic characterization and theoretical calculations unveil that alkali ions on ZrO2 change the surface intermediate from formate to carboxy species during CO2 activation, thus leading to exclusive CO formation. Meanwhile, alkali ions also reinforce the electronic Rh1-support interactions, endowing the Rh1 atoms more electron deficient, which improves the stability against sintering and inhibits deep hydrogenation of CO to CH4.  相似文献   
10.
Herein, we report divergent additions of 2,2′-diazidobiphenyls to C60 and Sc3N@Ih-C80. In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60. In contrast, the corresponding reaction with Sc3N@Ih-C80 switches to the C−H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5 , whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号