首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   14篇
物理学   14篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2014年   2篇
  2013年   2篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
准等熵压缩实验技术已用来研究材料在高压下的状态方程。基于聚龙一号装置平台,实现对样品的准等熵压缩和超高速飞片发射,进行了一系列实验来加深对负载构型的理解。通过对负载结构的设计,研究了构设电极尺寸与电极间隙对磁应力的大小与分布的影响。基于模拟和实验结果,带状线负载结构可以很好地提高磁压和提升装置的运行水平,其电极表面磁压分布也具有良好的均匀性和平面性。目前为止,已经可以用带状线负载在聚龙一号装置上获得峰值压力高达约100 GPa的准等熵压缩,并获得速度超过10 km/s的超高速飞片。  相似文献   
2.
基于聚龙一号装置的超高速飞片发射实验研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
磁驱动加载技术通过脉冲功率源将超大脉冲电流加载到实验负载区,从而形成随时间平滑上升的磁压力,实现对样品的准等熵压缩和超高速飞片发射.本文基于聚龙一号装置的输出特性参数,依次从负载结构、电极尺寸、电流波形和诊断系统等方面,分别设计完成了两种负载构型的超高速飞片发射实验.其中应用单侧带状负载发射尺寸Φ10 mm×0.725 mm的LY12铝飞片速度达到11.5 km/s,磁驱动加载压力近0.9 Mbar.比较模拟计算与实验结果,飞片发射过程和最终速度基本一致.而进一步的模拟计算表明,优化的负载结构尺寸和电流波形调节方案下,将有望发射尺寸Φ8.5 mm×1 mm的铝飞片速度超过15 km/s.从模拟设计到实验开展,已初步掌握了基于多支路脉冲功率发生器的超高速飞片发射实验技术.  相似文献   
3.
基于单粒子理论模型及积分算法,编写了单粒子轨道数值模拟程序———ALFA,分析了柱形和球形两种边界位形磁化等离子体靶中非热α粒子通过库仑碰撞对D-T等离子体加热的能量沉积率。在均匀背景磁场及相同的D-T等离子体密度、温度条件下,柱形边界中非热α粒子能量沉积率比球形边界更高。在相同等离子体温度及密度条件下,α粒子的能量沉积率随磁场的增大而增大,但计算结果表明,磁场的有效作用区域存在明显的上下限值,当等离子体内磁场小于下限阈值时,磁场增加对α粒子能量沉积率的提高贡献不大,而且当等离子体内磁场超过上限阈值后,磁场再增加对提高α粒子能量沉积率的作用也不明显。对不同几何尺寸的磁化等离子体靶,磁场有效作用区域的上下限值不同,靶尺寸越大,相应的上下限阈值越小。提高等离子体密度,可增加α粒子能量沉积率,也能降低磁场有效作用区域的上下限阈值。  相似文献   
4.
"荧光-1"实验装置物理设计   总被引:5,自引:0,他引:5       下载免费PDF全文
本文主要介绍"荧光-1"实验装置物理参数设计, 并依据半经验公式预估在实验装置上可能达到的磁化等离子体状态参数. 理论设计结果表明: "荧光-1"实验装置最大放电电流1.5 MA, 四分之一周期3 μs, 最大反向磁场4 T; 以此为实验平台, 当θ箍缩线圈内充气压力50 mTorr(D2气体)时, 形成的等离子体靶直径约为2 cm, 长度17 cm; 等离子体靶密度6.6×1016 cm-3, 温度 (Ti+Te) 约300 eV; 等离子体平均β值为0.95. 该状态参数接近磁化靶聚变所要求的等离子体靶初始状态参数. 关键词: 脉冲功率技术 反场构形 磁化等离子体 磁化靶聚变  相似文献   
5.
反场构形(FRC)预加热磁化等离子体是磁化靶聚变(MTF)中等离子体靶的主要形成方法之一。为了从物理机理及物理本质上更好地理解反场构形磁化等离子体的平衡状态,依据FRC等离子体的经典刚性转子(RR)模型,通过对平衡状态的解析求解,获得了等离子体各主要参数在平衡状态下的分布函数,并与标准二维磁流体力学(MHD)的数值模拟结果进行对比分析,在此基础上讨论了RR模型参数对平衡状态分布函数的影响。结果表明,在FRC等离子体分界线内部,RR解析模型可以较好地描述等离子体状态分布。  相似文献   
6.
基于脉冲功率技术的箍缩装置能够在cm空间尺度和百ns时间尺度产生极端的高温、高压、高密度以及强辐射环境。中物院流体物理研究所在已建成的10 MA级的大型箍缩装置上开展多种负载构型的高能量密度物理实验研究。利用Z箍缩动态黑腔创造出了惯性约束聚变研究所需的高温辐射场;研究了金属箔套筒和固体套筒的内爆动力学特性;利用中低Z材料内爆获得了可观的K壳层线辐射并用于X射线热-力学效应实验研究;磁驱动准等熵加载和冲击加载为材料动态特性研究提供了新的实验能力;采用环形二极管和反射三极管技术的轫致辐射源获得了高剂量(率)的X射线和γ射线;利用磁驱动的径向金属箔模拟了天体物理中恒星射流的形成及其辐射的产生。此外,还介绍了利用反场构型磁化靶聚变装置开展的预加热磁化等离子体靶形成等实验结果。  相似文献   
7.
电作用量在磁驱动固体套筒内爆设计分析中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
磁驱动固体套筒内爆作为标准柱面冲击/准等熵汇聚压缩加载方式,在流体动力学、材料物性和聚变能源等领域具有广泛应用前景.在特定加载条件下,套筒飞层材料、半径和厚度的选择决定了套筒内爆力学行为,而电流烧蚀限制了所能选择的参数范围.通过薄壁套筒假定引入作为动力学参量的电作用量概念,利用不可压缩零维模型给出了低线电流密度下薄壁套筒尺寸优化设计方法和套筒飞层材料选择的原则;将修正后的电阻率-电作用量模型嵌入自编的一维弹塑性磁流体力学程序SOL1D进行模拟计算,分别与FP-1装置及ZR装置上的实验结果进行比对,表明在大径厚比和低线电流密度加载下,利用电作用量估算内爆速度及利用电爆炸丝实验获取的各阶段电作用量判断套筒物理状态是有效的.  相似文献   
8.
9.
阚明先  贾月松  张南川  傅贞  章征伟 《强激光与粒子束》2023,35(2):025003-1-025003-5
采用二维磁驱动数值模拟程序(MDSC2)对大电流脉冲功率装置FP-2上的回流罩结构Z-箍缩实验exp90和exp60进行了数值模拟。数值模拟表明,回流罩结构Z-箍缩实验测量电流/回路电流不是负载套筒电流,回流罩结构Z-箍缩实验中回路电流不完全从负载套筒通过,回路电流和负载套筒电流之间存在一个结构系数,提出了边界磁场强度与回路电流关系的新公式。采用具有结构系数的边界磁场强度公式和磁流体力学程序能正确模拟exp90和exp60两个回流罩结构Z-箍缩实验,模拟的套筒内径运动速度和实验测量速度相一致。回流罩结构Z-箍缩实验的结构系数为一常数,仅由回流罩的初始结构确定。90 mm和60 mm内直径套筒的结构系数分别为0.87和0.90。在套筒初始厚度、绝缘材料等其它条件相同的情况下,套筒内径越大,回流罩结构Z-箍缩实验的结构系数越小。  相似文献   
10.
荧光-1是一套分时放电的大电流脉冲功率实验装置,主要用于反场构形预加热磁化等离子体靶(FRC)形成的物理过程、高温高密度磁化等离子体约束特性等研究,未来可作为磁化靶聚变研究的等离子体注入器。主要介绍该实验装置的构成及其调试实验结果,并简要描述在该装置上开展的FRC等离子体靶初步物理实验进展。调试实验结果表明,荧光-1实验装置初始磁场、磁镜、气体电离、箍缩分系统的放电电流/磁场或感应电场可分别达到110 kA/0.3 T,10 kA/1.2 T,400 kA/0.25 kV/cm,1.7 MA/3.4 T。初步物理实验获得的FRC等离子体靶参数为:靶分界面半径约4 cm、等离子体密度3.51016 cm-3、等离子体温度约200 eV、靶寿命约3 s,同时清晰地观察到了FRC靶形成物理过程。分幅相机获取图像与二维磁流体程序计算图像基本吻合,验证了该装置的物理设计思路,也展示了该装置具备的物理实验能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号