首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   3篇
物理学   8篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
采用波长532 nm的Nd:YAG纳秒激光器激发诱导空气中的玻璃,由高分辨率的光谱仪和ICCD对等离子体发射光谱采集和实现光电转换.以Si I 288.20 nm、Ca II 393.37 nm两条谱线作为分析线,研究ICCD门延迟,ICCD门宽、聚焦透镜到样品表面的距离(LTSD)对等离子体信号强度和信噪比的影响,确定最优化的实验参数:ICCD门宽1400 ns,ICCD门延迟500 ns,LTSD为84.5 mm.在最优化的实验条件下以Ca元素的六条离子谱线(315.89 nm, 317.93 nm, 370.60 nm, 373.69 nm, 393.37 nm, 396.85 nm)为分析线,计算得到玻璃等离子体的电子温度和电子密度分别20060 K, 8.256×10~(16) cm~(-3).  相似文献   
2.
石墨烯因其独特的六角晶格结构,使其具有优异的力、热、光、电等特性,成为目前应用研究最广泛的新型材料之一.本文从固体物理学的教学角度出发,以单层石墨烯的晶格结构为例,采用图像的形式描述了二维六角晶格的正格子原胞和基矢、倒格子原胞和基矢、q空间和第一布里渊区,并推导了二维六角晶格的振动模式.  相似文献   
3.
利用脉宽8 ns,波长为532 nm的Nd:YAG单脉冲纳秒激光器,在一个标准大气压下入射到土壤中(样品土壤来自蚌埠学院校园),改变样品温度,获得了不同样品温度下激光诱导击穿光谱. 通过分析光谱,得到土壤中不同特征谱线的强度和信噪比. 分别利用Boltzmann斜线法和Stark展宽法计算并分析了等离子体电子温度和电子密度随样品温度的演化规律;同时讨论了提高样品温度和激光诱导土壤等离子体辐射增强的原因. 实验结果表明,随着样品温度的升高,等离子体的谱线强度、信噪比、电子温度和电子密度会逐渐增强,并且在温度为100 °C时达到最大.  相似文献   
4.
晶格振动模式密度(声子态密度)即单位频率间隔内的模式数,是反映声子在波矢空间分布疏密程度的物理量.为了准确地求出晶格热容量随温度的变化关系,必须用较精确的办法计算出晶格振动的模式密度,进而掌握材料的热力学性质.一般教材中对该部分的讲解晦涩难懂,本文从晶格振动的物理意义开始,分析说明并推导一维、二维、三维不同体系的晶格振动模式密度公式,进而求出德拜模型下不同体系晶格热容公式.  相似文献   
5.
宫昊 《应用声学》2015,34(2):118-118
声反射成像测井技术将声源与接收器布置于同一个井中,通过探测从井旁地质界面反射回来的信号,实现对井周围地质构造进行成像。这种勘探方法既弥补了地震波勘探在成像分辨率方面的不足,又提高了声波测井技术的探测范围,具有广泛的应用前景。然而,在理论研究  相似文献   
6.
本文采用波长为532 nm的Nd:YAG单脉冲纳秒激光器诱导激发土壤(样品土壤来自蚌埠学院校园),并分析测量了土壤中铜元素的激光诱导击穿光谱特性.以铜元素的特征谱线Cu(393.3 nm)作为分析线,优化了实验参数增强型光电耦合器件(ICCD)门宽,ICCD门延迟对等离子体信号的影响,并在优化后的实验条件下测量分析了土壤中的金属元素种类.实验结果表明优化后的实验参数:ICCD门宽500ns,ICCD门延迟500 ns;在该优化条件下检测到样品土壤中含有金属元素:Fe, Cr, Ca, Mg, Cu, Al, Mn.  相似文献   
7.
为了研究样品温度对激光诱导击穿Cu等离子体特征参数的影响,以黄铜为研究对象,在优化的实验条件下采用波长为532 nm的Nd∶YAG纳秒脉冲激光诱导激发不同温度下的块状黄铜,测量了Cu等离子体的特征谱线强度和信噪比;同时在局部热平衡条件下利用Boltzmann斜线法和Stark展宽法分析计算了不同的样品温度条件下等离子体电子温度和电子密度。实验结果表明,在激光功率为60 mW时,随着样品温度的升高,Cu的特征谱线强度和信噪比逐渐增加,样品温度为130 ℃时达到最大值,然后趋于饱和。计算表明,黄铜样品中Cu元素Cu Ⅰ 329.05 nm,Cu Ⅰ 427.51 nm,Cu Ⅰ 458.71 nm,Cu Ⅰ 510.55 nm,Cu Ⅰ 515.32 nm,Cu Ⅰ 521.82 nm, Cu Ⅰ 529.25 nm,Cu Ⅰ 578.21 nm八条谱线在130℃的相对强度相较于室温(18 ℃)下分别提高了11.55倍、4.53倍、4.72倍,3.31倍、4.47倍、4.60倍、4.25倍、4.55倍,光谱信噪比分别增大了1.35倍,2.29倍、1.76倍、2.50倍、2.45倍、2.28倍、2.50倍,2.53倍。分析认为,升高样品温度会增大样品的烧蚀质量,相对于温度较低状态增加了等离子体中样品粒子浓度,进而提高等离子体发射光谱强度。所以,适当升高样品温度能够提高谱线强度和信噪比,从而增强LIBS技术检测分析光谱微弱信号的测量精度,改善痕量元素的检测灵敏度。同时研究了改变样品温度时等离子体电子温度和电子密度的变化趋势。计算表明,当样品温度从室温上升到130 ℃的过程中,等离子体的电子温度由4 723 K上升到7 121 K时基本不再变化。这种变化规律与发射谱线强度和信噪比变化趋势一致。分析认为,这主要是由于在升高样品温度的初始阶段,激光烧蚀量增大,等离子体内能增大,从而导致等离子体电子温度升高。当激光烧蚀样品的量达到一定值后不再变化,激光能量被激发溅射出来的样品蒸发物以及尘粒的吸收、散射和反射,导致激光能量密度降低,电子温度趋于饱和,达到某种动态平衡。选用一条Cu原子谱线(324.75 nm)的Stark展宽系数计算激光等离子体的电子密度,同时研究改变样品温度时等离子电子密度的变化趋势,计算表明在样品温度为130 ℃时,Cu Ⅰ 324.75 nm对应的等离子电子密度相较于室温(18 ℃)条件下增大了1.74×1017 cm-3。该变化趋势与电子温度的变化趋势一致。适当升高样品温度使得电子密度增大,从而提高电子和原子的碰撞几率,激发更多的原子,这是增强光谱谱线强度的原因之一。由此可见,升高样品温度是一种便捷的提高LIBS检测灵敏度的有效手段。  相似文献   
8.
梯形近似方法是研究低密度、短程力系统的主要方法,在典型的实验条件下,超冷费米气体满足梯形近似方法的使用条件。本文我们首先对超冷费米气体进行简要介绍,接着介绍了多体物理中的梯形近似方法在其中的应用,希望有助于学生对梯形近似方法的理解和掌握。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号