首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1046篇
  免费   169篇
  国内免费   212篇
化学   484篇
晶体学   54篇
力学   146篇
综合类   25篇
数学   285篇
物理学   433篇
  2023年   11篇
  2022年   36篇
  2021年   30篇
  2020年   33篇
  2019年   27篇
  2018年   26篇
  2017年   38篇
  2016年   43篇
  2015年   54篇
  2014年   59篇
  2013年   66篇
  2012年   71篇
  2011年   85篇
  2010年   78篇
  2009年   83篇
  2008年   86篇
  2007年   62篇
  2006年   76篇
  2005年   86篇
  2004年   46篇
  2003年   41篇
  2002年   27篇
  2001年   26篇
  2000年   30篇
  1999年   38篇
  1998年   17篇
  1997年   17篇
  1996年   18篇
  1995年   16篇
  1994年   9篇
  1993年   10篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   3篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1965年   2篇
  1964年   3篇
  1962年   3篇
  1961年   1篇
  1959年   1篇
  1957年   2篇
排序方式: 共有1427条查询结果,搜索用时 15 毫秒
1.
为了改善GaN HEMT的自热效应,集成高热导率的金刚石衬底有助于增强器件有源区的热量耗散。然而,化学气相淀积(CVD)生长的多晶金刚石(PCD)具有柱状晶粒结构,导致了各向异性的材料热导率,且其热导率值与生长厚度有关。为此,通过建模金刚石生长过程中晶粒尺寸的演变过程,计算了金刚石沿面内和截面方向的热导率。基于该PCD热导率模型,利用计入材料非线性热导率的GaN器件热阻解析模型,计算得到了GaN HEMT沟道温度的波动范围,并分析了其与器件结构(栅长、栅宽、栅间距、衬底厚度)和功耗的依赖关系。最后,通过与有限元(FEM)仿真结果对比,分区域提取了GaN HEMT器件中PCD衬底的有效热导率,分别为260~310 W/(m·K)和1 250~1 450 W/(m·K)。本文的计算为预测金刚石衬底上GaN HEMT器件的沟道温度提供了快速、有效的方法。  相似文献   
2.
Xu  Feixiang  Luo  Jiangchen  Jiang  Liqun  Zhao  Zengli 《Cellulose (London, England)》2022,29(3):1463-1472
Cellulose - In this research, the production of levoglucosan (LG) and levoglucosenone (LGO) was improved from acid-impregnated cellulose via fast pyrolysis. Thermogravimetric and kinetic analysis...  相似文献   
3.
Hexagonal boron nitride (BN) platelets, also known as white graphite, are often used to improve the thermal conductivities of polymeric matrices. Due to the poor interfacial compatibility between BN platelets and polymeric matrices, in this study, polyrhodanine (PRd) was used to modify BN platelets and prepared functionalized BN-PRd platelets, thereby enhancing the interfacial interaction between the thermal conductive filler and polymeric matrix. Then, BN-PRd platelets were dispersed into the nitrile butadiene rubber (NBR) matrix to yield high thermally conductive composites. The presence of N? C═S groups in PRd allowed the combination of PRd and NBR chains containing stable covalent bonds via vulcanization reaction. The thermal conductivity of the as-prepared 30 vol% BN-PRd/NBR composite reached 0.40 W/mK, representing an increment of 135% over pure NBR (0.17 W/mK). In addition, the largest tensile strength of NBR composite containing 30 vol% BN-PRd platelets was 880% times of pure NBR. The 30 vol% BN-PRd/NBR composite also displayed a relatively high dielectric constant (9.35 at 100 Hz) and a low dielectric loss tangent value (0.07 at 100 Hz), indicating their usefulness as dielectric flexible materials of microelectronics. In sum, the simplicity and good efficiency of formation of covalent bonds between boron nitride and rubber chains look very promising for large-scale industrial production of high thermally conductive composites.  相似文献   
4.
针对未来空间天文学应用的超分辨率光谱成像仪器的需求,对低噪声柱面微通道板(MCP)的制备方法及其性能进行了研究. 提出了一种将光学抛光与热成型相结合的新的柱面MCP制备方法,利用不含放射性元素的低噪声MCP玻璃,制备出曲率半径为400mm、尺寸为30mm′46mm、长径比为80:1、通道直径12.5mm、通道间距15mm的柱面MCP,并将其与感应电荷楔条形阳极(WSA)组成光子计数探测器,对其暗计数率、分辨率进行了检测,暗计数率约为0.1counts/cm2×s.  相似文献   
5.
6.
7.
为对美国静力学教材有较为全面的理解,以便于在教学和教材建设中参考借鉴,本文研究这些教材的历史发展与现状。概述美国静力学教材的起源与演变。选择有代表性的7本仍在使用的教材,考察这些教材的主要内容及其教学处理,分析这些教材的教学理念和特点。  相似文献   
8.
采用第一性原理杂化泛函HSE06方法对Fe掺杂α-Bi2O3的电子结构和光学性质进行了计算研究。结果表明,Fe掺杂α-Bi2O3体系有较小的结构变形,本征α-Bi2O3的禁带宽度为2.69 eV,Fe掺杂使α-Bi2O3的禁带宽度减小(约为2.34 eV)。对其光学性质研究得出Fe掺杂扩展了α-Bi2O3对可见光的吸收范围,即发生了红移,从而为Fe掺杂α-Bi2O3在光催化领域中的应用提供了理论依据。  相似文献   
9.
A symmetric tensor is called copositive if it generates a multivariate form taking nonnegative values over the nonnegative orthant. Copositive tensors have found important applications in polynomial optimization, tensor complementarity problems and vacuum stability of a general scalar potential. In this paper, we consider copositivity detection of tensors from both theoretical and computational points of view. After giving several necessary conditions for copositive tensors, we propose several new criteria for copositive tensors based on the representation of the multivariate form in barycentric coordinates with respect to the standard simplex and simplicial partitions. It is verified that, as the partition gets finer and finer, the concerned conditions eventually capture all strictly copositive tensors. Based on the obtained theoretical results with the help of simplicial partitions, we propose a numerical method to judge whether a tensor is copositive or not. The preliminary numerical results confirm our theoretical findings.  相似文献   
10.
Despite carbonate electrolytes exhibiting good stability to sulfurized polyacrylonitrile (SPAN), their chemical incompatibility with lithium (Li) metal anode leads to poor electrochemical performance of Li||SPAN full cells. While the SPAN employs conventional ether electrolytes that suffer from the shuttle effect, leading to rapid capacity fading. Here, we tailor a dilute electrolyte based on a low solvating power ether solvent that is both compatible with SPAN and Li metal. Unlike conventional ether electrolytes, the weakly solvating ether electrolyte enables SPAN to undergo reversibly “solid–solid” conversion. It features an anion–rich solvation structure that allows for the formation of a robust cathode electrolyte interphase on the SPAN, effectively blocking the dissolution of polysulfides into the bulk electrolyte and avoiding the shuttle effect. What's more, the unique electrolyte chemistry endowed Li ions with fast electroplating kinetics and induced high reversibility Li deposition/stripping process from 25 °C to −40 °C. Based on tailored electrolyte, Li||SPAN full cells matched with high loading SPAN cathodes (≈3.6 mAh cm−2) and 50 μm Li foil can operate stably over a wide range of temperatures. Additionally, Li||SPAN pouch cell under lean electrolyte and 5 % excess Li conditions can continuously operate stably for over a month.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号