首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   63篇
  国内免费   38篇
化学   262篇
晶体学   14篇
力学   140篇
综合类   4篇
数学   34篇
物理学   107篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   14篇
  2020年   29篇
  2019年   11篇
  2018年   9篇
  2017年   15篇
  2016年   20篇
  2015年   26篇
  2014年   22篇
  2013年   31篇
  2012年   23篇
  2011年   28篇
  2010年   31篇
  2009年   27篇
  2008年   30篇
  2007年   35篇
  2006年   16篇
  2005年   29篇
  2004年   19篇
  2003年   21篇
  2002年   15篇
  2001年   15篇
  2000年   13篇
  1999年   9篇
  1998年   10篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   11篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1957年   1篇
排序方式: 共有561条查询结果,搜索用时 31 毫秒
1.
The resistance of metal–organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al‐MIL‐101‐NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long‐term stability of Al‐MIL‐101‐URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al‐MIL‐101‐URPh decomposed at least 12‐times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2O sorption measurements, powder X‐ray diffraction, thermogravimetric and chemical analysis as well as solid‐state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m2 g?1 for Al‐MIL‐101‐URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity‐dependent uptake of Al‐MIL‐101‐URPh is slowed and occurs at higher relative humidity values. In combination with 1H‐27Al D ‐HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.  相似文献   
2.
Abstract

This work presents on improvement in gravimetric measurement for determining the porosity and thickness of microporous silicon. Herein, the corrosion of fresh macroporous silicon (f-MPSi) in 1.0?M NaOH with different concentrations of polyethylene glycol (PEG 200/400/600) was studied by weight loss measurement and scanning electron microscopy (SEM). The results showed that the corrosion rate decreased with increasing polyethylene glycol concentration, and increased with an increase in temperature. Polyethylene glycol can inhibit the corrosion of f-MPSi in NaOH solution. Moreover, 1.0?M NaOH/PEG 600 (10%) can be used as the optimized solution to remove f-MPSi for measuring its porosity and thickness by gravimetric measurement.  相似文献   
3.
This work reports on a novel and versatile approach to control the structure of metal–organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.  相似文献   
4.
Highly ordered mesoporous niobium‐doped TiO2 with a single‐crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb‐doped TiO2. The XPS measurements of Nb‐doped TiO2 showed the presence of Nb5+ and correspondingly Ti3+. With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate‐like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals.  相似文献   
5.
基于脱铝多级孔BEA沸石与二氯二茂钛的固相反应,开展了钛掺杂量可调的多级孔Ti-beta后处理工艺制备研究.对制备的多级孔Ti-beta样品的理化性质进行了表征,包括X射线衍射、氮气吸附脱附测试、扫描电镜、透射电镜、紫外可见吸收光谱和紫外拉曼光谱等.结果表明,多级孔BEA沸石具有较好的化学稳定性,脱铝-钛化的后处理过程未对样品多级孔结构产生明显影响. 以环己烯和十二烯的烯烃环氧化为探针反应表征了合成多级孔Ti-beta与纯相微孔Ti-beta沸石的催化性能.结果表明,在小分子环己烯的环氧化反应中,多级孔Ti-beta沸石的催化活性(转化率59.4%)与微孔Ti-beta相当(转化率57.9%);但是在较大分子十二烯的催化反应中,多级孔结构Ti-beta材料的催化性能(转化率11.1%)明显优于纯相微孔材料(转化率6.8%),且产物中环氧化物选择性更高(分别为60.3%和37.8%).  相似文献   
6.
An efficient chemical way to finely control the layer-by-layer stacking of inorganic nanosheets (NS) is developed by tuning the type and composition of intercalant ion, and the reaction temperature for restacking process. The finely controlled stacking of NS relies on a kinetic control of the self-assembly of NS in the presence of coordinating organic cations. A critical role of organic cations in this assembly highlights the importance of the appropriate activation energy. Of prime importance is that a fine-control of the interstratification of 2D NS is highly effective not only in tailoring its pore structure but also in enhancing its electrode activity. The present study clearly demonstrates that the kinetically controlled restacking of NS provides a facile and powerful method to tailor their stacking number and functionality.  相似文献   
7.
Application of low-cost carbon black from lignin highly depends on the materials properties, which might by determined by raw material and processing conditions. Four different technical lignins were subjected to thermostabilization followed by stepwise heat treatment up to a temperature of 2000 °C in order to obtain micro-sized carbon particles. The development of the pore structure, graphitization and inner surfaces were investigated by X-ray scattering complemented by scanning electron microscopy and FTIR spectroscopy. Lignosulfonate-based carbons exhibit a complex pore structure with nanopores and mesopores that evolve by heat treatment. Organosolv, kraft and soda lignin-based samples exhibit distinct pores growing steadily with heat treatment temperature. All carbons exhibit increasing pore size of about 0.5–2 nm and increasing inner surface, with a strong increase between 1200 °C and 1600 °C. The chemistry and bonding nature shifts from basic organic material towards pure graphite. The crystallite size was found to increase with the increasing degree of graphitization. Heat treatment of just 1600 °C might be sufficient for many applications, allowing to reduce production energy while maintaining materials properties.  相似文献   
8.
Filter cake formation is important in groundwater and oil wells where drilling contains suspended mud particles. The accumulation of these mud particles on the borehole wall creates a pressure drop in the well. Furthermore, the migration of colloidal particles into adjacent porous rock could damage the formation and cause productivity decline. In this study, numerical solutions for pore liquid pressure variation across the cake with variable total stress and associated porosity variation are obtained. Mass equations for captured and suspended particles are averaged along the mud cake thickness, taking into account conditions on the cake surface and at the filter septum. The variability of total stress in soil consolidations problem is considered to determine the pore liquid pressure along the mud cake thickness. Then, the relation between porosity and pressure is studied to determine the mud cake porosity. Experimental data obtained by various researchers is used to compare and test the validity of numerical solutions to develop guidelines for model applications. Results show that the pore liquid pressure increases with the decrease of membrane impedance value (i.e. less pervious membrane). Also, the pressure profile has a cubic function of dimensionless cake thickness. The conclusions from the sensitivity analysis conducted in this study agree with earlier conclusions.  相似文献   
9.
Various versions of representations of the percolation Reynolds number for porous media with isotropic and anisotropic flow properties are considered. The formulas are derived and the variants are analyzed with reference to model porous media with a periodic microstructure formed by systems of capillaries and packings consisting of spheres of constant diameter (ideal and fictitious porous media, respectively). A generalization of the Kozeny formula is given for determining the capillary diameter in an ideal porous medium equivalent to a fictitious medium with respect to permeability and porosity and it is shown that the capillary diameter is nonuniquely determined. Relations for recalculating values of the Reynolds number determined by means of formulas proposed earlier are given and it is shown that taking the microstructure of porous media into account, as proposed in [1, 2], makes it possible to explain the large scatter of the numerical values of the Reynolds number in processing the experimental data.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号