首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3893篇
  免费   565篇
  国内免费   298篇
化学   1497篇
晶体学   21篇
力学   1229篇
综合类   45篇
数学   634篇
物理学   1330篇
  2023年   36篇
  2022年   58篇
  2021年   83篇
  2020年   144篇
  2019年   99篇
  2018年   128篇
  2017年   127篇
  2016年   187篇
  2015年   142篇
  2014年   191篇
  2013年   284篇
  2012年   195篇
  2011年   226篇
  2010年   207篇
  2009年   220篇
  2008年   246篇
  2007年   241篇
  2006年   244篇
  2005年   232篇
  2004年   177篇
  2003年   177篇
  2002年   145篇
  2001年   117篇
  2000年   93篇
  1999年   83篇
  1998年   88篇
  1997年   81篇
  1996年   63篇
  1995年   63篇
  1994年   55篇
  1993年   39篇
  1992年   60篇
  1991年   43篇
  1990年   38篇
  1989年   23篇
  1988年   15篇
  1987年   16篇
  1986年   11篇
  1985年   15篇
  1984年   11篇
  1983年   3篇
  1982年   14篇
  1981年   7篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1957年   2篇
排序方式: 共有4756条查询结果,搜索用时 15 毫秒
1.
通过与超星专业慕课制作团队合作搭建网络教学平台,将线上慕课教学与线下实验教学相结合,对材料表征方法理论与实践课程进行了全方位的改革。与传统实验教学相比,改革后的课程不仅能够激发学生的学习兴趣,实现时间空间的相对自由,还可以完善考核机制,提升教学质量,从而为高校化学研究生实验课程的改革提供一定的借鉴意义。  相似文献   
2.
Dimethyldichlorosilane, one of the most consumed organosilicon monomers in the industry, can be prepared in a highly efficient and environmentally friendly synthesis method of disproportionating methylchlorosilanes. However, the internal mechanism of the reaction remains unclear. In this paper, the mechanism catalyzed by AlCl3/MIL‐53(Al) and AlCl3/MIL‐53(Al)@γ‐Al2O3 catalysts was calculated at B3LYP/6‐311++G(3df, 2pd) level by using the density functional theory (DFT). The results showed that although the two catalysts had similar active structures, the catalytic effects were significantly different. The Lewis acid center on the surface of γ‐Al2O3 in the core‐shell catalyst is complementary to the classic Lewis acid AlCl3 through the spatial superposition effect, which greatly improves the Lewis acid catalytic activity of AlCl3/MIL‐53(Al)@γ‐Al2O3.  相似文献   
3.
In the last decade,the functionally graded carbon nanotube reinforced composites(FG-CNTRCs)have attracted considerable interest due to their excellent mechanical properties,and the structures made of FG-CNTRCs have found broad potential applications in aerospace,civil and ocean engineering,automotive industry,and smart structures.Here we review the literature regarding the mechanical analysis of bulk CNTR nanocomposites and FG-CNTRC structures,aiming to provide a clear picture of the mechanical modeling and properties of FG-CNTRCs as well as their composite structures.The review is organized as follows:(1)a brief introduction to the functionally graded materials(FGM),CNTRCs and FG-CNTRCs;(2)a literature review of the mechanical modeling methodologies and properties of bulk CNTRCs;(3)a detailed discussion on the mechanical behaviors of FG-CNTRCs;and(4)conclusions together with a suggestion of future research trends.  相似文献   
4.
Dense and homogeneous metal–organic framework (MOF) coatings on functional bead surfaces are easily prepared by using intermediate sacrificial metal oxide coatings containing the metal precursor of the MOF. Polystyrene (PS) beads are coated with a ZnO layer to give ZnO@PS core–shell beads. The ZnO@PS beads are reactive in the presence of 2‐methylimidazole to transform part of the ZnO coating into a porous zeolitic imidazolate framework‐8 (ZIF‐8) external shell positioned above the internal ZnO precursor shell. The obtained ZIF‐8@ZnO@PS beads can be easily packed in column format for flow‐through applications, such as the solid‐phase extraction of trace priority‐listed environmental pollutants. The prepared material shows an excellent permeance to flow when packed as a column to give high enrichment factors, facile regeneration, and excellent reusability for the extraction of the pollutant bisphenol A. It also shows an outstanding performance for the simultaneous enrichment of mixtures of endocrine disrupting chemicals (bisphenol A, 4‐tert‐octylphenol and 4‐n‐nonylphenol), facilitating their analysis when present at very low levels (<1 μg L?1) in drinking waters. For the extraction of the pollutant bisphenol A, the prepared ZIF‐8@ZnO@PS beads also show a superior extraction and preconcentration capacity to that of the PS beads used as precursors and the composite materials obtained by the direct growth of ZIF‐8 on the surface of the PS beads in the absence of metal oxide intermediate coatings.  相似文献   
5.
In numerically simulating heat and mass transport processes in an unconfined domain involving synthetic open (inflow and/or outflow) boundaries, how to properly specify flow conditions at these boundaries can become a challenging issue. In this work, within the context of a pressure‐based finite volume method under an unstructured grid, a solution procedure without the need for explicit specification of flow profiles at any of these boundaries when simulating incompressible fluid flow is proposed and numerically examined. Within this methodology, the flow at any open boundary is not necessarily assumed to be unidirectional or fully developed; indeed, the sole information required is the mass flow rate crossing the boundary. As a result, one can select the specific region of interest to perform simulations, rather than having to artificially increase the flow domain so as to invoke fully developed flow at all open boundaries. This not only greatly reduces computational costs (both in terms of memory requirements and simulation run‐time) but provides the means to engage with flow problems, which otherwise cannot be solved with currently available methods for handling the flow conditions at open boundaries. The proposed methodology is demonstrated by simulating laminar flow of an incompressible fluid in a two‐dimensional planar channel with a 90° T‐branch, a known inflow rate, and flow splits for the two outflow channels. The results obtained by placing the entrance and the two exits at different locations show that the flow behavior predicted is completely unaffected by using a highly truncated domain. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
The development of nanotechnology has led to the design of cutting‐edge nanomaterials with increasing levels of complexity. Although “traditional” solid, uniform nanoparticles are still the most frequently reported structures, new generations of nanoparticles have been constantly emerging over the last several decades. The outcome of this nano‐art extends beyond nanomaterials with alternative compositions and/or morphologies. The current state‐of‐the‐art allows for the design of nanostructures composed of different building blocks that exhibit diverse properties. Furthermore, those properties can be a reflection of either individual features, which are characteristic of a particular building block alone, and/or synergistic effects resulting from interactions between building blocks. Therefore, the unique structures as well as the outstanding properties of nanorattles have attracted increasing attention for possible biomedical and industrial applications. Although these nanoparticles resemble core–shell particles, they have a distinctive feature, which is a presence of a void that provides a homogenous environment for the encapsulated core. In this Review, we give a comprehensive insight into the fabrication of nanorattles. A special emphasis is put on the choice of building blocks as well as the choice of preparation method, because those two aspects further influence properties and thus possible future applications, which will also be discussed.  相似文献   
7.
8.
张军锋  刘庆帅  曹晨  陈淮 《应用力学学报》2020,(1):308-314,I0021,I0022
为明确冷却塔在水平地震下的内力环向分布特征及内在原因,同时探究不同地震波时程与规范反应谱所得内力差异的原因,以某大型双曲冷却塔为例,在动力特性分析的基础上,通过反应谱方法和时程方法的水平地震响应计算及对比分析,对上述两个问题进行了研究。研究表明:由于仅侧弯振型对水平地震有贡献,而塔筒的侧弯振型和实际响应均表现为整体侧倾并伴随微弱的截面“流动”变形,这也使塔筒各内力的环向分布分别呈现正弦、余弦分布特征;其整体侧倾可类比于悬臂杆结构,塔筒子午向轴力FY、子午向弯矩MY、剪力FXY和扭矩MXY的环向分布可借助悬臂杆侧倾时截面正应力和剪应力分布来解释;而截面“流动”变形则决定了环向轴力FX和环向弯矩MX的环向分布;整体侧移显著而截面变形极小也使FY和FXY的幅值在塔筒中下部明显大于FX;由于冷却塔第1阶侧弯振型在水平地震响应中往往起绝对主导作用,因此可先对所选地震波计算得到其反应谱,对比第1阶侧弯振型周期对应的水平地震影响系数α值,即可初步推断不同时程及规范反应谱方法所得结果的大小关系。  相似文献   
9.
The Ni? Mo/Mg(OH)2 (NMM) hybrid as an efficient flame retardancy and smoke suppression composite for polypropylene (PP) was synthesized through Ni? Mo co‐precipitation on the surface of Mg(OH)2 (MH) hexagonal nanosheets. Compared to PP/MH, PP/NMM exhibited excellent smoke suppressing and flame retardancy on the heat release rate, total heat release, smoke production rate, total smoke production, CO production rate and total CO production with the same loading. The reduced hazard of PP/NMM was mainly attributed to the high physical barrier effect of compact char residues on heat, smoke and combustible gas. The mechanism study indicated that multiwalled carbon nanotubes (MWCNTs) generated from the catalytic carbonization of PP by the Ni? Mo compound could play the role of “rebar” to strengthen the char residues, avoid the generation of cracks and form highly compact char layer. Furthermore, MgO could facilitate the production of MWCNTs through changing the pyrolysis process of PP and increasing the reaction time between pyrolysis gas and Ni? Mo compound. Hence, the new Ni? Mo/MH catalyst hybrid may explore the potential for solving the tough problem of the flammability and heavy smoke of the polyolefins system.  相似文献   
10.
Indium phosphide (InP) quantum dots (QDs) are ideal substitutes for widely used cadmium-based QDs and have great application prospects in biological fields due to their environmentally benign properties and human safety. However, the synthesis of InP core/shell QDs with biocompatibility, high quantum yield (QY), uniform particle size, and high stability is still a challenging subject. Herein, high quality (QY up to 72%) thick shell InP/GaP/ZnS core/shell QDs (12.8 ± 1.4 nm) are synthesized using multiple injections of shell precursor and extension of shell growth time, with GaP serving as the intermediate layer and 1-octanethiol acting as the new S source. The thick shell InP/GaP/ZnS core/shell QDs still keep high QY and photostability after transfer into water. InP/GaP/ZnS core/shell QDs as fluorescence labels to establish QD-based fluorescence-linked immunosorbent assay (QD-FLISA) for quantitative detection of C-reactive protein (CRP), and a calibration curve is established between fluorescence intensity and CRP concentrations (range: 1–800 ng mL−1, correlation coefficient: R2 = 0.9992). The limit of detection is 2.9 ng mL−1, which increases twofold compared to previously reported cadmium-free QD-based immunoassays. Thus, InP/GaP/ZnS core/shell QDs as a great promise fluorescence labeling material, provide a new route for cadmium-free sensitive and specific immunoassays in biomedical fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号