首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   14篇
化学   1篇
力学   59篇
数学   15篇
物理学   8篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
2.
IntroductionAs one of the meshfree methods, multiple scale reproducing kernel particle method(RKPM)[1,2]bears, besides the common features of all meshfree methods, a uniqueinherent feature of multiresolution analysis by which the structural response can b…  相似文献   
3.
In this work, the finite point method is applied to the solution of high‐Reynolds compressible viscous flows. The aim is to explore this important field of applications focusing on two main aspects: the easiness and automation of the meshless discretization of viscous layers and the construction of a robust numerical approximation in the highly stretched clouds of points resulting in such domain areas. The flow solution scheme adopts an upwind‐biased scheme to solve the averaged Navier–Stokes equations in conjunction with an algebraic turbulence model. The numerical applications presented involve different attached boundary layer flows and are intended to show the performance of the numerical technique. The results obtained are satisfactory and indicative of the possibilities to extend the present meshless technique to more complex flow problems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
采用高阶无网格法求解薄板弯曲问题,在已发展的线性曲率光顺方案的基础上,通过引入泰勒展开技术,建立了能够精确再现纯弯曲和线性弯曲模式的节点积分方法。与之相比,目前无网格薄板分析主要采用的节点积分方法仅能精确再现纯弯曲模式。数值结果表明,本文方法可精确通过纯弯曲和线性弯曲试验,且能得到光滑、无振荡的弯矩场。与标准的高斯积分方法和目前已存在的节点积分方法相比,本文方法在计算精度、效率以及弯矩分布等方面均展现出显著优势。  相似文献   
5.
Wall boundary conditions in smoothed particle hydrodynamics (SPH) is a key issue to perform accurate simulations. We propose here a new approach based on a renormalising factor for writing all boundary terms. This factor depends on the local shape of a wall and on the position of a particle relative to the wall, which is described by segments (in two‐dimensions), instead of the cumbersome fictitious or ghost particles used in most existing SPH models. By solving a dynamic equation for the renormalising factor, we significantly improve traditional wall treatment in SPH, for pressure forces, wall friction and turbulent conditions. The new model is demonstrated for cases including hydrostatic conditions for still water in a tank of complex geometry and a dam break over triangular bed profile with sharp angle where significant improved behaviour is obtained in comparison with the conventional boundary techniques. The latter case is also compared with a finite volume and volume‐of‐fluid scheme. The performance of the model for a two‐dimensional laminar flow in a channel is demonstrated where the profiles of velocity are in agreement with the theoretical ones, demonstrating that the derived wall shear stress balances the pressure gradient. Finally, the performance of the model is demonstrated for flow in a schematic fish pass where both the velocity field and turbulent viscosity fields are satisfactorily reproduced compared with mesh‐based codes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
A greedy method for choosing an optimum reduced set of control points is integrated with RBF interpolation and evaluated for the purpose of interpolating large‐volume data sets in CFD. Given a function defined at a set of points, the greedy method selects a small subset of these points that is sufficient to keep the interpolation error at all the remaining points below a chosen bound. This is equivalent to a type of data compression and would have useful storage, post‐processing, and computational applications in CFD. To test the method in terms of both the point selection scheme and the suitability of reduced control point volume interpolation, a trial application of the interpolation to velocity fields in CFD volume meshes is considered. To optimise the point selection process, and attempt to be able to capture multiple length scales, a variable support radius formulation has also been included. Structured and unstructured mesh cases are considered for aerofoils, a wing case and a wing‐body case. For smooth volume functions, the method is shown to work well, producing accurate velocity interpolations using a very small number of the cells in the mesh. For general complex fields including large gradients, the method is still shown to be effective, although large gradients require more interpolation points to be used.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
We are going to study a simple and effective method for the numerical solution of the closed interface boundary value problem with both discontinuities in the solution and its derivatives. It uses a strong‐form meshfree method based on the moving least squares (MLS) approximation. In this method, for the solution of elliptic equation, the second‐order derivatives of the shape functions are needed in constructing the global stiffness matrix. It is well‐known that the calculation of full derivatives of the MLS approximation, especially in high dimensions, is quite costly. In the current work, we apply the diffuse derivatives using an efficient technique. In this technique, we calculate the higher‐order derivatives using the approximation of lower‐order derivatives, instead of calculating directly derivatives. This technique can improve the accuracy of meshfree point collocation method for interface problems with nonhomogeneous jump conditions and can efficiently estimate diffuse derivatives of second‐ and higher‐orders using only linear basis functions. To introduce the appropriate discontinuous shape functions in the vicinity of interface, we choose the visibility criterion method that modifies the support of weight function in MLS approximation and leads to an efficient computational procedure for the solution of closed interface problems. The proposed method is applied for elliptic and biharmonic interface problems. For the biharmonic equation, we use a mixed scheme, which replaces this equation by a coupled elliptic system. Also the application of the present method to elasticity equation with discontinuities in the coefficients across a closed interface has been provided. Representative numerical examples demonstrate the accuracy and robustness of the proposed methodology for the closed interface problems. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1031–1053, 2015  相似文献   
8.
A semi‐implicit characteristic‐based split (CBS) meshfree algorithm in the arbitrary Lagrangian Eulerian (ALE) framework is proposed for the numerical solution of incompressible free surface flow problem in the paper. The algorithm is the extension of general CBS method which was initially introduced in finite element framework, this is due to the fact that CBS method not only can enhance the stability, but also avoid LBB condition when equal order basis function is used to approximate velocity and pressure variables. Meanwhile, a simple way for node update and node speed calculation is developed which is used to capture the free surface exactly. The numerical solutions are compared with available analytical and numerical solutions, which shows that the proposed method has better ability to simulate the free surface incompressible flow problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
9.
为探索高维多介质流体力学散乱点集上的Lagrange有限点方法,首先对相应一维问题进行研究,提出一种Lagrange有限点方法:在计算区域内(包括物质界面)设置任意离散点集,所有力学量都设在该点集上,在内点和界面点上分别建立离散格式.内点算法为基于Taylor展开的差分方法.界面点算法为显式追踪算法,从定解条件出发,利用Rankine-Hugoniot关系和特征差分方法,计算界面点位置及相应的状态量变化.通过追踪界面点的运动得到物质界面是方法的最大特色.典型算例计算结果与精确解符合很好,验证了算法的合理和有效性.  相似文献   
10.
裂纹问题的一致性高阶无网格法   总被引:2,自引:0,他引:2  
一致性高阶无网格法能高效精确地求解连续体问题,尤其是能得到高精度的应力场。本文将该方法拓展到应力解析精度至关重要的裂纹问题(即非连续体问题)的数值分析。采用背景积分网格描述裂纹几何,基于无需增加节点额外自由度的虚拟节点法描述裂纹处位移场的间断,提出了虚拟节点的引入算法和断裂单元的数值积分方法。为进一步模拟裂纹扩展,采用相互作用积分方法计算应力强度因子,裂纹的扩展方向由最大周向应力准则确定。数值结果表明,本文发展方法能够精确地通过间断分片试验;相较于标准的高阶无网格法和低阶一致性无网格法,本文的一致性高阶无网格法显著改善了应力强度因子的计算精度,能够准确预测裂纹扩展路径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号