首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   14篇
  国内免费   5篇
化学   21篇
力学   144篇
综合类   1篇
数学   15篇
物理学   55篇
  2022年   3篇
  2021年   8篇
  2020年   14篇
  2019年   7篇
  2018年   10篇
  2017年   15篇
  2016年   27篇
  2015年   11篇
  2014年   25篇
  2013年   10篇
  2012年   26篇
  2011年   12篇
  2010年   15篇
  2009年   15篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2005年   11篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1971年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
1.
2.
In this paper, the static shakedown theorem is reformulated making use of the symmetric Galerkin boundary element method (SGBEM) rather than of finite element method. Based on the classical Melan’s theorem, a numerical solution procedure is presented for shakedown analysis of structures made of elastic-perfectly plastic material. The self-equilibrium stress field is constructed by linear combination of several basis self-equilibrium stress fields with parameters to be determined. These basis self-equilibrium stress fields are expressed as elastic responses of the body to imposed permanent strains obtained through elastic–plastic incremental analysis. The lower bound of shakedown load is obtained via a non-linear mathematical programming problem solved by the Complex method. Numerical examples show that it is feasible and efficient to solve the problems of shakedown analysis by using the SGBEM.  相似文献   
3.
Speckle patterns to be used for digital image correlation (DIC) at the micrometer level up to 1400 °C were fabricated by several methods. The quality of the patterns before and after heating was evaluated in terms of the mean intensity gradient (MIG) and the speckle size distribution. The displacement accuracy in simulative translation of images showed that the MIG alone was not enough to evaluate the pattern properties; a large MIG, an even speckle size distribution, and a wide speckle size range pattern were required for a good DIC. The reaction between the patterning material and substrate, the cracking of speckles, and the plastic flow of patterning material may cause changes in the pattern morphology at high temperature. Two patterning methods, spraying a mixture of ceramics powder and binder by a fine-nozzle air brush and abrading a polished surface, yielded a small pattern with high MIG values and even size distributions that was stable at 1400 °C. The potential of the fabricated patterns was shown by measuring the coefficient of thermal expansion of polycrystalline Al2O3 from 800 °C to 1400 °C.  相似文献   
4.
This paper discusses various constitutive restrictions on the strain energy function for an isotropic hyperelastic material derived from the condition of strong ellipticity. The strain energy function is assumed to be a function of a novel set of invariants of the Hencky (logarithmic or natural) strain tensor introduced by Criscione et al. (J. Mech. Phys. Solids 48 (2000) 2445). A key step in the analysis is the derivation of an expression for the Fréchet derivative of the Hencky strain with respect to the deformation gradient that is convenient for analyzing the quadratic form over the space of second order tensors central to establishing strong ellipticity. The theory is illustrated by applying the restrictions to a model for rubber proposed by Criscione et al. (J. Mech. Phys. Solids 48 (2000) 2445) It is shown that while that model can be made to violate strong ellipticity, it does so only for very large strains.  相似文献   
5.
肿瘤微环境包括肿瘤细胞、间质细胞、细胞外基质等.其在肿瘤的生长和发展过程中起着关键作用.肿瘤的微环境与正常组织的微环境有着显著的不同.肿瘤中的压应力对微环境有着多方面的影响, 例如, 可调控血管与淋巴管的功能, 造成代谢异常和间质高压, 压缩间隙基质, 增大药物输运的困难, 促进间质细胞变异并诱导肿瘤细胞转移. 因此, 肿瘤中的力学因素引起了广泛关注.本文总结了肿瘤及其微环境力学问题的研究进展, 讨论了肿瘤微环境中应力产生、药物输运、肿瘤转移等问题, 介绍了肿瘤微环境正常化的策略及其对肿瘤治疗的意义.  相似文献   
6.
《力学快报》2020,10(6):419-428
Wake separation is crucial to aircraft landing safety and is an important factor in airport operational efficiency. The near-ground evolution characteristics of wake vortices form the foundation of the wake separation system design. In this study, we analysed the near-ground evolution of vortices in the wake of a domestic aircraft ARJ21 initialised by the lift-drag model using large eddy simulations based on an adaptive mesh. Evolution of wake vortices formed by the main wing, flap and horizontal tail was discussed in detail. The horizontal tail vortices are the weakest and dissipate rapidly, whereas the flap vortices are the strongest and induce the tip vortex to merge with them. The horizontal tail and flap of an ARJ21 do not significantly influence the circulation evolution, height change and movement trajectory of the wake vortices. The far-field evolution of wake vortices can therefore be analysed using the conventional wake vortex model.  相似文献   
7.
8.
Stretchable electronics has been applied to balloon catheters for high-efficacy ablation, with tactile sensing integrated on the surface, to establish full and conformal contact with the endocardial surface for elimination of the heart sink caused by blood flow around their surfaces. The balloon of the catheter folds into uniform ‘clover’ patterns driven by the pressure mismatch inside (∼vacuum) and outside of the balloon (pressure ∼1 atm). The balloon catheter, on which microelectrodes and interconnects are printed, undergoes extreme mechanical deformation during its inflation and deflation. An analytic solution is obtained for balloon catheter inflation and deflation, which gives analytically the distribution of curvatures and the maximum strain in the microelectrodes and interconnects. The analytic solution is validated by the finite element analysis. It also accounts for the effect of inflated radius, and is very useful to the optimal design of balloon catheter.  相似文献   
9.
Metallic thin-walled round tubes are widely used as energy absorption elements. However, lateral splash of the round tubes under impact loadings reduces the energy absorption efficiency and may cause secondary damage. Therefore, it is necessary to assemble and fasten round tubes together by boundary constraints and/or fasteners between tubes, which increases the time and labor cost and affects the mechanical performance of round tubes. In an effort to break through this limitation, a novel self-locked energy-absorbing system has been proposed in this paper. The proposed system is made up of thin-walled tubes with dumbbell-shaped cross section, which are specially designed to interlock with each other and thus provide lateral constraint under impact loadings. Both finite element simulations and impact experiment demonstrated that without boundary constraints or fasteners between tubes, the proposed self-locked energy-absorbing system can still effectively attenuate impact loads while the round tube systems fail to carry load due to the lateral splashing of tubes. Furthermore, the geometric design for a single dumbbell-shaped tube and the stacking arrangement for the system are discussed, and a general guideline on the structural design of the proposed self-locked energy absorbing system is provided.  相似文献   
10.
Precise separation and localization of microdroplets are fundamental for various fields, such as high-throughput screening, combinatorial chemistry, and the recognition of complex analytes. We have developed a droplet self-splitting strategy to divide an impacting droplet into predictable microdroplets and deposit them at preset spots for simultaneous multidetection. No matter exchange was observed between these microdroplets, so they could be manipulated independently. Droplet self-splitting was attributed to anisotropic liquid recoiling on the patterned adhesive surface, as influenced by the droplet Weber number and the width of the low-adhesive stripe. A quantitative criterion was also developed to judge the droplet self-splitting capability. The precise separation and distribution of microdroplets enabled simultaneous arrayed reactions and multiple analyte detection using one droplet of sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号