首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
力学   6篇
数学   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2013年   1篇
  2011年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
将FRP布视为正交各向异性材料,考虑其拉伸与压缩时的双弹性模量性质,给出了四周粘贴FRP布加固带裂缝木梁四点弯曲的边值问题,得到了FRP布加固木梁挠度的解析解,并验证了其有效性和适用性.参数分析表明:相比于侧面粘贴CFRP布,在木梁受拉侧沿轴向粘贴CFRP布的刚度加固效果更加显著;CFRP布加固木梁的挠度随CFRP加固布厚度和弹性模量的增加而减小,但当侧贴CFRP布厚度增加到某一值时,继续增加厚度对木梁挠度的减少效果已不明显;当受拉侧CFRP布厚度较小时,木梁挠度随CFRP布厚度的增加非线性减小,而当受拉侧CFRP布厚度较大时,木梁挠度随CFRP布厚度几乎呈线性减小.同时,当侧贴CFRP布的剪切模量很大时,此时,CFRP布加固带裂缝木梁的挠度趋于CFRP布加固完整无裂缝木梁的挠度,此时,CFRP加固完全消除了裂缝因素.  相似文献   
2.
By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state.  相似文献   
3.
欧阳煜  李航  楚鹏辉 《力学季刊》2022,43(1):178-189
考虑裂纹缝隙效应,建立了Euler-Bernoulli梁中开闭裂纹位置、深度和初始张开角等损伤参数的识别方法.首先,基于梁中开闭裂纹的等效单向扭转弹簧模型,给出了开闭裂纹Euler-Bernoulli梁静力弯曲挠度的显式闭合解.在此基础上,证明了裂纹诱导弦挠度函数由分段三次多项式组成,并基于其构造特征,建立了基于测量挠度的梁中开闭裂纹位置、裂纹等效扭转弹簧柔度、裂纹初始张开角和裂纹上下侧属性等参数的数值识别方法.最后,通过数值实验考察了挠度测量误差和裂纹位置等对裂纹识别结果的影响,结果表明:裂纹位置、裂纹等效扭转弹簧柔度和裂纹初始张开角等的识别误差随挠度测量误差增大而增大,但裂纹识别结果具有较强的鲁棒性,在工程实际中具有一定的应用前景.  相似文献   
4.
基于梁横向开裂纹的线性扭转弹簧模型,给出了具有任意裂纹数目的简支外伸梁弯曲挠度的显式解析解,研究了集中载荷作用下简支外伸梁裂纹诱导弦挠度函数的性质,给出了裂纹位置和裂纹等效扭转弹簧柔度的近似表达式,从而实现了梁横向裂纹位置及裂纹损伤程度的识别.在此基础上,为利用裂纹梁的测量挠度识别裂纹损伤,提出了分段线性函数的最佳拟合法,实现了简支外伸梁裂纹的损伤参数识别.通过数值试验验证了该识别方法的适用性和可靠性,考察了识别结果对梁挠度测量误差和裂纹深度的敏感性,结果表明随着挠度测量误差的增大,裂纹损伤参数识别误差增大,但裂纹损伤识别方法具有较强的鲁棒性,在工程实际中具有一定的应用性.  相似文献   
5.
欧阳煜  王嘉明  杨骁 《力学季刊》2019,40(2):315-326
梁中横向裂纹等效为无质量内部转动弹簧,假定纤维增强聚合物(FRP)布与梁表面紧密粘贴,建立了考虑轴向压力二阶效应FRP 布加固裂纹梁线性弯曲的控制方程,并得到其显式解析通解.在此基础上,研究了FRP加固简支裂纹木梁的稳定性,通过数值求解方程,分析了纤维增强聚合物(CFRP)布含量、裂纹深度和位置以及数量等因素对CFRP 布加固简支裂纹杉木梁临界载荷的影响,结果表明:CFRP 加固可明显减小裂纹深度和数量等对裂纹杉木梁临界载荷的影响,且裂纹处弯矩较大或裂纹较深时加固效应愈加显著;CFRP 加固裂纹木梁临界载荷随CFRP 布加固层含量的增加而增加,但当CFRP 布含量达到一定值后,进一步增加CFRP 含量对CFRP加固裂纹梁临界载荷提高并不明显.  相似文献   
6.
考虑加固层中纤维增强聚合物布(FRP布)拉伸与压缩时的不同弹性模量,基于梁大挠度变形假定,首先建立了FRP加固细长木梁大挠度弯曲的一般数学模型,给出了考虑梁弯曲二阶效应的非线性控制方程.其次,研究了FRP布加固细长简支木柱的非线性稳定性问题,得到了FRP加固简支木柱的临界载荷公式.理论证明了其过屈曲解的存在性,并利用摄动法,得到了临界载荷附近过屈曲状态的渐近解析解.进行了参数分析,结果表明:FRP加固层对临界载荷有显著的影响,而对其无量纲过屈曲状态影响较小.  相似文献   
7.
By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号