首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   65篇
  国内免费   132篇
化学   492篇
晶体学   2篇
力学   23篇
综合类   9篇
数学   6篇
物理学   40篇
  2024年   1篇
  2023年   19篇
  2022年   19篇
  2021年   66篇
  2020年   61篇
  2019年   39篇
  2018年   28篇
  2017年   22篇
  2016年   30篇
  2015年   21篇
  2014年   34篇
  2013年   39篇
  2012年   24篇
  2011年   9篇
  2010年   15篇
  2009年   12篇
  2008年   11篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   13篇
  2003年   8篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   11篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有572条查询结果,搜索用时 229 毫秒
1.
2.
Multimodal approaches combined with various nanomaterials and advanced techniques have been developed for synergistic cancer treatment. Among various therapies, conventional chemotherapy (CHT) is a direct cancer treatment that can produce unintended side effects due to nonspecific action on both the tumor and normal cells; patient-friendly photothermal therapy (PTT) may be able to treat embedded tumors in vital regions with minimal invasion but does not guarantee complete removal of cancers. However, the combination of CHT-PTT may provide a promising tool for direct cancer treatment with minimal side effects. In this regard, nanostructured materials, such as gold nanorods with tuned size and surface characteristics, are key components designed to enhance the heating capacity and active or passive delivery of drugs to the tumor site. In this review, the pioneering work synergizing CHT and PTT is summarized, and the current state-of-the-art in the development of inorganic and organic nanocomposites for combinational therapy is described.  相似文献   
3.
Background: Carnosine is a dipeptide molecule (β-alanyl-l-histidine) with anti-inflammatory, antioxidant, anti-glycation, and chelating properties. It is used in exercise physiology as a food supplement to increase performance; however, in vitro evidence suggests that carnosine may exhibit anti-cancer properties. Methods: In this study, we investigated the effect of carnosine on breast, ovarian, colon, and leukemic cancer cell proliferation. We further examined U937 promonocytic, human myeloid leukemia cell phenotype, gene expression, and cytokine secretion to determine if these are linked to carnosine’s anti-proliferative properties. Results: Carnosine (1) inhibits breast, ovarian, colon, and leukemic cancer cell proliferation; (2) upregulates expression of pro-inflammatory molecules; (3) modulates cytokine secretion; and (4) alters U937 differentiation and phenotype. Conclusion: These effects may have implications for a role for carnosine in anti-cancer therapy.  相似文献   
4.
In this report, CuO/MoS2 composites were successfully prepared by the hydrothermal method where nano‐sized CuO was uniformly distributed on the surface of hierarchical MoS2 substrates (CuO/MoS2 composites). Their physicochemical properties and catalytic performance in ammonium perchlorate (AP) decomposition were investigated and characterized by XRD, SEM, TEM, BET, XPS, TG/DSC and combustion measurement. The results showed that it could decrease AP decomposition temperature at high decomposition stage from 416.5 °C to 323.5 °C and increase the heat release from 378 J/g (pure AP) to 1340 J/g (AP with catalysts), which was better than pure CuO nanoparticles (345.5 °C and 1046 J/g). Meanwhile, it showed excellent performance in combustion reaction either in N2 or air atmosphere. The results obtained by photocurrent spectra, photoluminescence spectra and time‐resolved fluorescence emission spectra indicated that loading CuO mediated the generation rate and combination rate of electrons and holes, thus tuning the catalytic performance on AP decomposition. This study proved that employing the supports that can synergistically interact with CuO is an efficient strategy to enhance the catalytic performance of CuO.  相似文献   
5.
6.
Eleven constituents were characterised by gas chromatography–mass spectrometry analysis, and five molecules were isolated using column chromatography. The in vitro study of the extract and isolated molecules against KB and SiHa cell lines revealed oleanolic acid (1) and oleic acid (2) as potent cytotoxic molecules with potential anticancer activity. The IC50 values of n-hexane extract (CPHF), oleanolic acid (1) and oleic acid (2) were >300, 56.08 and 70.7 μg/mL (μM), respectively, against KB cell lines and >300, 47.24 and 80.2 μg/mL (μM), respectively, against SiHa cell lines.  相似文献   
7.
8.
Gold nanorod (GNR)–photosensitizer (PS) complex was prepared using anionic PS (sodium salt of purpurin‐18) and cationic poly(allylamine hydrochloride) by layer‐by‐layer method, and was characterized by transmission electron microscopy, UV‐vis spectroscopy, and zeta potential. The GNR–PS complex is a promising agent for synergistic (photothermal and photodynamic) therapy (PTT/PDT), in which PTT generates heat as well as operates the PS release which maximize the following PDT activity. The combined dual therapy, PTT followed by PDT, exhibits a significantly higher photocytotoxicity result based on synergistic effect of hyperthermia from PTT as well as singlet oxygen photogeneration from PDT.  相似文献   
9.
采用一步水热法合成了硼、磷共掺杂铁钴材料(Fe-Co-B-P)。借助扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)等技术对所合成材料的形貌、结构和组成进行表征。利用线性扫描伏安(LSV)、循环伏安(CV)、电化学阻抗谱(EIS)等技术研究材料电化学析氧反应(OER)性能。结果表明,Fe-Co-B-P表面疏松且粗糙,颗粒间有许多空隙。在电流密度为10和100 mA·cm-2时,其过电势分别为278和309 mV,Tafel斜率为24 mV·dec-1,说明该材料具有较优的电催化析氧性能。其在连续进行10 h的计时电位测试过程中,电势基本保持在1.55 V(vs RHE),表明该催化剂具有较好的电化学稳定性。这是由于铁钴双金属与硼、磷非金属之间的协同作用促进了电子的传递。  相似文献   
10.
Formaldehyde decomposition is not only an attractive method for hydrogen production, but also a potential approach for gaseous formaldehyde removal. In this research, we prepare some assembled organoruthenium through coordination reaction between Ru(p-Cymene)Cl2 and bridge-linking ligands. It is a creative approach for Ru(p-Cymene)Cl2 conversion into heterogeneous particles. The rigidity of bridge-linking ligand enables assembled organoruthenium to have highly ordered crystalline structure, even show clear crystal lattice with spacing of 0.19 nm. XPS shows the N−Ru bond are formed between bridge-linking ligand and Ru(p-Cymene)Cl2. The assembled organoruthenium has high abundant active sites for formaldehyde decomposition at low temperature. The reaction rate could increase linearly with temperature and formaldehyde concentration, with a TOF of 2420 h−1 at 90 °C. It is promising for gaseous formaldehyde decomposition in wet air or nitrogen. Formaldehyde conversion is up to 95 % over Ru-DAPM is 4,4′-diaminodiphenylmethane at 90 °C in air. Gaseous formaldehyde decomposition is a two-steps process under oxygen-free condition. Firstly, formaldehyde dissolve in water, and be converted into hydrogen and formic acid through formaldehyde-water shift reaction. Then intermediate formic acid will further decompose into hydrogen and carbon dioxide. We also find formaldehyde decomposition is a synergetic catalysis process of oxygen and water in moist air. Oxygen is conducive to formic acid desorption and decomposition on the active sites, so assembled organoruthenium exhibit slightly higher conversion for formaldehyde decomposition in moist air. This work proposes a distinctive method for gaseous formaldehyde decomposition in the air, which is entirely different from formaldehyde photocatalysis or thermocatalysis oxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号