首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3528篇
  免费   788篇
  国内免费   198篇
化学   3217篇
晶体学   11篇
力学   156篇
综合类   31篇
数学   501篇
物理学   598篇
  2023年   44篇
  2022年   56篇
  2021年   144篇
  2020年   206篇
  2019年   142篇
  2018年   117篇
  2017年   135篇
  2016年   226篇
  2015年   241篇
  2014年   285篇
  2013年   262篇
  2012年   245篇
  2011年   251篇
  2010年   179篇
  2009年   211篇
  2008年   265篇
  2007年   215篇
  2006年   233篇
  2005年   199篇
  2004年   177篇
  2003年   153篇
  2002年   72篇
  2001年   62篇
  2000年   61篇
  1999年   41篇
  1998年   38篇
  1997年   55篇
  1996年   43篇
  1995年   21篇
  1994年   21篇
  1993年   16篇
  1992年   12篇
  1991年   11篇
  1990年   8篇
  1989年   12篇
  1988年   3篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有4514条查询结果,搜索用时 15 毫秒
1.
近年来,设计和合成高性能非富勒烯受体(NFAs)材料已经成为太阳能电池研究领域的前沿课题。基于DA'D型稠环结构的NFAs由于具有吸光系数高、能级和带隙可调、结构易于修饰、分子可高效合成、光电学性能优异等优点而受到了越来越广泛的关注。在短短7年的时间里,能量转换效率(PCE)从3%~4%提高到18%。2019年初邹应萍等报道了一个优秀的受体分子Y6,与PM6共混制备单结电池,获得了15.7%的能量转换效率。Y6类受体材料的中心给电子单元为DA'D型稠环结构,缺电子单元(A')通过氮原子与两个给电子单元(D)并联形成稠环结构,这有助于降低前线分子轨道能级并增强吸收,同时与氮相连的两个烷基链和位于噻吩并噻吩β位的两个侧链则有助于提高溶解度及调节结晶性。自Y6问世以来,人们对分子的结构剪裁进行了深入的研究,并报道了数十种新的结构。在这些新的受体中,DA'D部分的结构裁剪对提高器件效率和太阳能电池的性能起着至关重要的作用。本文对A'、D单元和侧链结构修饰的研究进展进行了综述。通过选择几组受体,对最近报道的分子进行分类,并将它们的光学、电化学、电学和光电性质与精确的结构修饰相关联,从而对结构-性能关系进行全面概述。  相似文献   
2.
Aqueous self-assembly of short peptides has attracted growing attention for the construction of supramolecular materials for various bioapplications. Herein, we describe how the thermolysin-assisted biocatalytic construction of a dipeptide hydrazide from an N-protected amino acid and an amino acid hydrazide leads to the formation of thermally stable supramolecular hydrogels. In addition, we demonstrate the post-assembly modification of the supramolecular architectures constructed in situ tethering hydrazide groups as a chemical handle by means of fluorescence imaging.  相似文献   
3.
Endocytic pathways are practical routes for the intracellular delivery of biomacromolecules. Along with this, effective strategies for endosomal cargo release into the cytosol are desired to achieve successful delivery. Focusing on compositional differences between the cell and endosomal membranes and the pH decrease within endosomes, we designed the lipid-sensitive and pH-responsive endosome-lytic peptide HAad. This peptide contains aminoadipic acid (Aad) residues, which serve as a safety catch for preferential permeabilization of endosomal membranes over cell membranes, and His-to-Ala substitutions enhance the endosomolytic activity. The ability of HAad to destabilize endosomal membranes was supported by model studies using large unilamellar vesicles (LUVs) and by increased intracellular delivery of biomacromolecules (including antibodies) into live cells. Cerebral ventricle injection of Cre recombinase with HAad led to Cre/loxP recombination in a mouse model, thus demonstrating potential applicability of HAad in vivo.  相似文献   
4.
Transition-metal-catalyzed C−H activation has shown potential in the functionalization of peptides with expanded structural diversity. Herein, the development of late-stage peptide macrocyclization methods by palladium-catalyzed site-selective C(sp2)−H olefination of tryptophan residues at the C2 and C4 positions is reported. This strategy utilizes the peptide backbone as endogenous directing groups and provides access to peptide macrocycles with unique Trp–alkene crosslinks.  相似文献   
5.
Organic solar cell of silol dithiophene based D2-A-D1-A-D2/PC71BM (D: donor part; A: acceptor part; 1 and 2 denote different units) possesses promising power conversion efficiency. Researchers have studied D2-A-D1-A-D2 molecules carefully, including the effects of the different number of terminal thiophenes, the different central moiety (D1), and the length of the alkyl chain. However, there are few investigations, especially theoretical studies, on the influences of different A (acceptor) units on the properties of D2-A-D1-A-D2 molecule. In the present work, we have designed and modeled five new D2-A-D1-A-D2 (D2 = bithiophene and D1 = silol dithiophene) donors by changing A units (A = diketopyrrolopyrrole, naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole, 5-fluoro-2,1,3-benzoselenadiazole, benzobisthiadiazole, and thiazolo[5,4-d]thiazole). We have applied density functional theory (DFT) and time-dependent DFT to predict their ground-state electronic structures and the UV–vis spectra, and the open circuit voltages (Vocs) of organic solar cells of D2-A-D1-A-D2/PC71BM. Based on the calculated results, we find that bithiophene thiazolo[5,4-d]thiazole siloldithiophene (BTTS) (D2 = bithiophene, A = thiazolo[5,4-d]thiazole, D1 = silol dithiophene) possesses the highest lowest unoccupied molecular orbital (−2.60 eV) and the lowest highest occupied molecular orbital (−5.33 eV) energies, and the strongest absorption in the visible region. Besides, the solar cell of BTTS/PC71BM has the highest Voc of 1.02 V. These results indicate that it may be a promising donor. In contrast, bithiophene benzobisthiadiazole siloldithiophene (BBBS) (A = benzobisthiadiazole) has low absorption strength in the visible region, which indicates that it may not be a suitable donor material.  相似文献   
6.
A combined experimental and computational approach was used to distinguish between different polymorphs of the pharmaceutical drug aspirin. This method involves the use of ab initio random structure searching (AIRSS), a density functional theory (DFT)-based crystal structure prediction method for the high-accuracy prediction of polymorphic structures, with DFT calculations of nuclear magnetic resonance (NMR) parameters and solid-state NMR experiments at natural abundance. AIRSS was used to predict the crystal structures of form-I and form-II of aspirin. The root-mean-square deviation between experimental and calculated 1H chemical shifts was used to identify form-I as the polymorph present in the experimental sample, the selection being successful despite the large similarities between the molecular environments in the crystals of the two polymorphs.  相似文献   
7.
Two novel inclusion compounds of 4,4′‐sulfonyldibenzoate anions and tetrapropylammonium cations with different ancillary molecules of water and boric acid, namely bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate dihydrate, 2C12H28N+·C14H8O6S2−·H2O ( 1 ), and bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate bis(boric acid), 2C12H28N+·C14H8O6S2−·2H3BO3 ( 2 ), were prepared and characterized using single‐crystal X‐ray diffraction. In the two salts, the host 4,4′‐sulfonyldibenzoic acid molecules, which are converted to the corresponding anions under basic conditions, can be regarded as proton acceptors which link different proton donors of the ancillary molecules of water or boric acid. In this way, an isolated hydrogen‐bonded tetramer is constructed in salt 1 and a ribbon is constructed in salt 2 . The tetramers and ribbons are then packed in a repeating manner to generate various host frameworks, and the tetrapropylammonium guest counter‐ions are contained in the cavities of the host lattices to give the final stable crystal structures. In these two salts, although the host anion and guest cation are the same, the difference in the ancillary small molecules results in different structures, indicating the significance of ancillary molecules in the formation of crystal structures.  相似文献   
8.
Polypeptides have received noticeable attention in the biomedical field due to their structural versatility and biomimetic properties. Particularly, polypeptides that are responsive to biological stimuli, such as mildly acidic extracellular and intracellular conditions, have great potential as delivery carriers for therapeutics. However, synthesis of high-molecular-weight acid-labile peptides is often daunting due to highly restrictive polymerization conditions and limitations in preserving acid-degradable functional groups. For instance, the popular N-carboxyanhydride (NCA) ring-opening polymerization (ROP) is efficient, but acid-labile NCA monomers are difficult to synthesize and store. In this study, acid-labile polypeptides with high molecular weights were synthesized under mild, permissive conditions using carboxylated urethane derivative monomers which are stable for ease of handling. The polymerization was successful in various organic solvents at room temperature, and did not require additional energy or initiation to drive the formation of NCA intermediates. The polymerization was also rapid enough to be independent of inert atmosphere. The strategy explored here to synthesize high-molecular-weight acid-labile polypeptides offers significant advantages including facile synthesis of acid-labile urethane derivative monomers that are stable, even in contact with moisture, and fast polymerization under easily achievable conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 280–286  相似文献   
9.
A photoresponsive discrete metallogelator was rationally designed by incorporating a photochromic azobenzene subunit in the structure of a redox‐active ferrocene–peptide conjugate. The target molecule was purposefully equipped with a dipeptide unit capable of self‐assembly in response to sonication. The designed molecule was shown to undergo supramolecular self‐assembly and achieve organogelation in response to ultrasound, light, heat, and redox signals. The sol–gel phase transition of the designed gelator was found to be sensitive to a plethora of input stimuli, allowing the application of the sol–gel transition behavior in basic logic gate operations. A gel‐based NOT logic gate operation was realized when the redox‐active property of the organogel was examined by using different oxidizing agents. The smart response of the gelator was further exploited in designing XOR operations under oxidizing or non‐oxidizing conditions.  相似文献   
10.
A disulfide intercalator toolbox was developed for site‐specific attachment of a broad variety of functional groups to proteins or peptides under mild, physiological conditions. The peptide hormone somatostatin (SST) served as model compound for intercalation into the available disulfide functionalization schemes starting from the intercalator or the reactive SST precursor before or after bioconjugation. A tetrazole–SST derivative was obtained that undergoes photoinduced cycloaddition in mammalian cells, which was monitored by live‐cell imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号