首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   7篇
化学   43篇
晶体学   1篇
综合类   1篇
物理学   9篇
  2021年   3篇
  2018年   3篇
  2015年   1篇
  2013年   4篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   3篇
  2004年   7篇
  2003年   3篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
In this study, TiO2/CdS/CdxCu1−xSe, TiO2/CdS/CdxMn1−xSe, and TiO2/CdS/CdxAg2−2xSe thin films were synthesized by chemical bath deposition for the fabrication of photoanode in quantum-dot-sensitized solar cells. As a result, the structural properties of the thin films have been studied by X-ray diffraction, which confirmed the zinc Blende structure in the samples. The optical films were researched by their experimental absorption spectra with different doping concentrations. Those results were combined with the Tauc correlation to estimate the absorption density, the band gap energy, valence band and conduction band positions, steepness parameter, and electron–phonon interaction. Furthermore, the electrical features, electrochemical impedance spectrum and photocurrent density curves were carried out. The result was used to explain the enhancing performance efficiency.  相似文献   
2.
Selenium (Se) speciation in soil affects its bioavailability to crops. An analytical procedure for the determination of inorganic Se species (selenite and selenate) in soil extracts by anion-exchange liquid chromatography (LC) with ICP-MS detection has been developed, with 10-fold higher sensitivity than existing HGAAS-based soil Se measurements. A comparison of phosphate extraction solutions on agricultural soils amended with 20?µg?kg–1 selenate or selenite was carried out, and a 0.016?M?KH2PO4 extraction solution is recommended. Recovery of selenate was >91%; however, selenite recovery ranged between 18.5% and 46.1%, due to rapid binding to the soil. Soil preparation did not have a significant (p?>?0.05) effect on the extractability of the selenate or selenite amendments. The stability of Se species in the phosphate extracts was variable, depending on temperature and storage time. Therefore, immediate (<1?h) analysis of the soil extracts is preferable. The method developed was applied to the determination of extractable Se from six arable soils in the UK. Extractable Se levels in these soils ranged between 6 and 13?µg?kg–1 consisting of selenite and some soluble organic Se.  相似文献   
3.
以HF、HCl、H2O和NaAc溶液为调节剂合成了4种MOF-Fe样品,用X射线衍射(XRD)、透射电镜(TEM)、N2等温吸附-脱附、综合热分析(TG/DTG和DTA)和质子电位滴定研究了4种样品的结构与表面性质,以及对亚硒酸根(Se(Ⅳ))等温吸附特性。MOF-Fe(HF)、MOF-Fe(HCl)、MOF-Fe(H2O)和MOF-Fe(NaAc)四种样品均具有八面体MIL-100(Fe)的晶体结构,但它们的结晶度和晶面取向略有差异。4种样品的比表面积分别为1 683、1 517、1 641和1 734 m2·g-1,其总孔体积依次降低,微孔孔径分别为1.27、1.22、1.22和1.17 nm。MOF-Fe(HF)样品的脱羧基失重峰温度最高(415℃),苯环碳化失重峰温度最低(462℃);MOF-Fe(HCl)、MOF-Fe(H2O)和MOF-Fe(NaAc)样品出现了因氧化铁被碳还原所致的失重平台(566~716℃)。样品悬浮液从pH=6.0降到3.0时,消耗H+的量表现为MOF-Fe(H2O) > MOF-Fe(HCl) > MOF-Fe(HF)=MOF-Fe(NaAc),它们的电荷零点(pHZPC)依次为3.1、3.5、3.6和3.5。MOF-Fe(NaAc)、MOF-Fe(HCl)、MOF-Fe(H2O)和MOF-Fe(HF)对Se(Ⅳ)的吸附亲和力依次减小,它们对Se(Ⅳ)的吸附容量(Qm)分别为77.69、107.07、117.40和87.15 mg·g-1。显著性分析显示,MOF-Fe的羟基密度与样品吸附Se(Ⅳ)的Qm显著正相关。研究结果表明,MOF-Fe样品的结构热稳定性和羟基/配位水分子等活性位点密度受合成样品时加入的调节剂影响,用HF作为调节剂合成MOF-Fe样品有利于提高样品中羧基与苯环之间的C-C键合强度和热分解产物的稳定性,降低苯环碳化温度;HCl和H2O作为调节剂有利于提高样品的活性位点密度,可提高MOF-Fe样品对Se(Ⅳ)吸附容量。  相似文献   
4.
The new nickel selenite chloride, Ni5(SeO3)4Cl2, was obtained by high-temperature solid state reaction of NiCl2, Ni2O3 and SeO2 in a 1:2:4 molar ratio at 700 °C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni5(SeO3)4Cl2 crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2) Å, α=101.97(3), β=105.60(3), γ=91.83(3)° and Z=2. All nickel(II) ions in Ni5(SeO3)4Cl2 are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O5Cl], [Ni(2)O4Cl2], [Ni(3)O5Cl], [Ni(4)O6] and [Ni(5)O4Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO32− anions as well as Cl anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.  相似文献   
5.
Ion diffusion kinetics has been studied using the data of conductivity measurements for aqueous solutions of sodium selenite with different concentrations and at different temperatures. Molecular and ionic self-diffusion coefficients have been determined for infinitely dilute solutions in the temperature range 288 K-313 K. The limiting values of ion mobility and changes in the energies of translation of water molecules from ions’ hydration shell have been found. At elevated temperatures, ΔE tr 0 increases for both ions in direct proportion to the crystallographic radius of the latter. Ion hydration numbers at 298 K have been calculated. The results of this study are interpreted in the light of Samoilov’s theory on positive and negative hydration of ions.Original Russian Text Copyright © 2004 by L. T. Vlaev and S. D. Genieva__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 870–876, September–October, 2004.  相似文献   
6.
Syntheses and spectral characteristics of cadmium(II) compounds (CdSeO4, CdSeO3, and Cd(NCSe)2(nia)2) containing selenium in oxidation states (VI), (IV), and (-II) are described. In Cd(NCSe)2(nia)2, nicotinamide (nia) and selenocyanate anions are bonded to Cd atom as N-donor monodentate ligands. Nicotinamide is coordinated through the ring nitrogen atom. The effects of these selenium compounds as well as Cd(NCS)2(nia)2 on the growth and Cd accumulation in roots and shoots of hydroponically cultivated chamomile plants (cultivar Lutea) were studied. In the applied concentration range (12–60 μmol dm−3) Cd(NCS)2(nia)2 affected neither the length nor the dry mass of roots and shoots. Other compounds applied at 24 μmol dm−3 and 60 μmol dm−3 significantly reduced dry mass of roots and shoots. Selenium oxidation state in the cadmium compounds affected Cd accumulation in plant organs as well as Cd translocation within the plants, which was reflected in the values of bioaccumulation (BAF) and translocation factors (S/R). Cd amount accumulated by shoots was lower than that in the roots. The highest BAF values determined for Cd accumulation in shoots were obtained with CdSeO4. Substitution of S with Se in the Cd(NCX)2(nia)2 (X = Se or S) caused an increase of Cd translocation into the shoots. Presented at the XVIIIth Slovak Spectroscopic Conference, Spišská Nová Ves, 15–18 October 2006.  相似文献   
7.
砷是一种生物活性元素。长期接触砷会导致癌症、心脏病、糖尿病等疾病的发生。无机砷甲基化是砷在动物体内的主要代谢方式,被公认为砷元素的解毒过程,因此无机砷甲基化的研究引起了科学家们的广泛关注并取得了重要进展。本文综述了近年来国内外学者及作者研究组在"砷甲基化酶","无机砷甲基化机制"及"无机砷甲基化抑制"等方面的研究进展。  相似文献   
8.
Human activities have been contaminating the environment with toxic heavy metal and metalloid compounds. Since the toxicity of one metal or metalloid can be dramatically modulated by the simultaneous ingestion of another, studies addressing the molecular basis of chemical interactions between toxic and essential elements are increasingly important. The intravenous injection of rabbits with selenite and arsenite or with selenite and mercuric mercury resulted in the in vivo formation of the seleno‐bis (S‐glutathionyl) arsinium ion, [(GS)2AsSe]?, or a glutathione‐coated mercuric selenide, (GS)5(HgSe)core, in blood. The formation of these species (and the formation of a cadmium–selenium species in blood after the exposure of rats to selenite and cadmium) critically involves reactive selenite metabolites, such as GS–Se? and/or HSe?, which indicates that these physiologically important metabolites are molecular targets of ingested toxic metals and metalloids. The fate and stability of [(GS)2AsSe]? and (GS)5(HgSe)core in vivo imply that the chronic exposure of mammals to inorganic arsenic and mercury will cumulatively affect the bioavailability of selenium, which could lead to selenium deficiency. Since selenium deficiency is significantly associated with the etiology of cancer in humans, the GSH‐driven in vivo formation of selenium‐containing metal and metalloid species provides a likely molecular mechanism for the chronic toxicity of environmentally persistent inorganic arsenic, mercury and cadmium. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
9.
Selenium losses in river, ground, snow-melt and tap water samples, and the recovery of selenite, selenate and selenomethionine added to purified water have been studied. In 1-litre high-density polyethylene bottles, tap, river and snow-melt water samples (at Se concentrations of 44.5–138 ng/l) could be stored at 4 °C for up to 15 days without Se losses. In similar samples stored at room temperature Se losses of 13–25% after 15 days were found, except for groundwater, which showed no Se losses during storage for 13 months at room temperature or at 4 °C. Selenite and selenate added to purified water were recovered without losses after 15 days at 4 °C, while 7.5% of selenomethionine was lost. The stability of different chemical forms of Se during storage followed the order: selenate > selenomethionine > selenite. It is recommended that unacidified water samples should not be kept in polyethylene bottles at room temperature for more than 1 week, nor stored at 4 °C for more than 2 weeks, before analysis for Se.  相似文献   
10.
Selenite was boiled in KCl solutions of different concentrations at the respective boiling temperatures and atmospheric pressure. The products were subjected to X-ray diffraction analysis, qualitative infrared analysis, differential thermal analysis and microscopic examination. The product obtained in 1.0 M KCl solution was the -form of calcium sulphate hemihydrate (-CaSO4·0.5H2O). In more concentrated KCl solution (1.5, 2.0, 2.5, 3.0, 3.5 or 4.0 M), the -form of calcium sulphate hemihydrate (-CaSO4·0.5H2O) was formed, and a reaction took place between KCl and CaSO4, which gave a double salt: potassium pentacalcium sulphate monohydrate (K2SO4·5CaSO4·H2O).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号