首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7452篇
  免费   557篇
  国内免费   869篇
化学   8003篇
晶体学   56篇
力学   20篇
综合类   33篇
数学   20篇
物理学   746篇
  2024年   3篇
  2023年   53篇
  2022年   52篇
  2021年   101篇
  2020年   199篇
  2019年   211篇
  2018年   206篇
  2017年   270篇
  2016年   354篇
  2015年   259篇
  2014年   321篇
  2013年   823篇
  2012年   379篇
  2011年   376篇
  2010年   402篇
  2009年   425篇
  2008年   461篇
  2007年   478篇
  2006年   468篇
  2005年   462篇
  2004年   414篇
  2003年   320篇
  2002年   316篇
  2001年   234篇
  2000年   102篇
  1999年   82篇
  1998年   102篇
  1997年   63篇
  1996年   82篇
  1995年   196篇
  1994年   196篇
  1993年   176篇
  1992年   132篇
  1991年   37篇
  1990年   25篇
  1989年   15篇
  1988年   16篇
  1987年   12篇
  1986年   6篇
  1985年   5篇
  1984年   15篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有8878条查询结果,搜索用时 15 毫秒
1.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
2.
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2474–2480  相似文献   
3.
The thermal decomposition of post-consumer samples of a carbonated water bottle made of poly(ethylene terephthalate), PC-PET, was examined by linear temperature programing under an argon atmosphere to determine its mass loss kinetics. A simple kinetic model, called the first order pseudo single-component model, was used. The total weight-loss of each sample assumed to be in two periods, with each period corresponding to a one step decomposition of the PC-PET to volatiles. Three methods for determining the kinetic parameters by thermal gravimetric analysis were examined: differential analysis at a constant heating rate (differential), temperatures of a given conversion at a number of heating rates (isoconversional), and the maximum rate at multiple heating rates (peak temperature). The latter two multiple heating rates methods results were comparable to each other but they were not in agreement with the results from the differential method. The results of the differential method were insensitive to the heating rate and consistent with kinetics data reported in the literature for PET.  相似文献   
4.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
5.
The aim of this work was i) to develop a hydrothermal, low-temperature synthesis protocol affording the upconverting hexagonal phase NaYF4 with suitable dopants while adhering to the “green chemistry” standards and ii) to explore the effect that different parameters have on the products. In optimizing the synthesis protocol, short reaction times and low temperatures (below 150 °C) were considered. Yb3+ and Er3+ ions were chosen as dopants for the NaYF4 material. Within the context of the second goal, parameters including nature of the precursors, treatment temperature, and treatment time were investigated to afford a pure hexagonal crystalline phase, both in the doped and undoped materials. To fully explore the synthesis results, the prepared materials were characterized from a structural (XRD), compositional (XPS, ICP-MS), and morphological (SEM) point of view. The upconverting properties of the compounds were confirmed by photoluminescence measurements.  相似文献   
6.
Eight corners of a double-four ring cage-type germanoxane, containing a fluoride ion, were successfully silylated by the combination of chlorosilanes and silazanes. Three different silyl groups, trimethylsilyl, dimethylsilyl, and dimethylvinylsilyl, were attached on the corners of germanoxane cage. The solubility and reactivity of the cage modified with dimethylvinylsilyl groups were significantly increased, allowing for further reaction. Hydrosilylation reaction between dimethylvinylsilylated cage geramanoxanes and dimethylsilylated cage siloxanes afforded porous solids. Functionalization of the corners of germanoxanes with silyl groups should provide valuable building blocks in various functional materials.  相似文献   
7.
Per- and polyfluoroalkyl substances (PFAS) have rapidly accumulated in the environment due to their widespread use prior to commercial discussion in the early 21st century, and their slow degradation has magnified concerns of their potential toxicity. Monitoring their distribution is, therefore, necessary to evaluate and control their impact on the health of exposed populations. This investigation evaluates the capability of a simple polymeric detection scheme for PFAS based on crosslinked, thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. Surveying swelling perturbations induced by several hydrotropes and comparable hydrocarbon analogs, tetraethylammonium perfluorooctane sulfonate (TPFOS) showed a significantly higher swelling ratio on a mass basis (65.5 ± 8.8 at 15°C) than any of the other analytes tested. Combining swelling with the fluorimetric response of a solvachromatic dye, nile red, revealed the fluorosurfactant to initiate observable aggregation (i.e., its critical aggregation concentration) at 0.05 mM and reach saturation (i.e., its charge neutralization concentration) at 0.5 mM. The fluorosurfactant was found to homogeneously distribute throughout the polymer matrix with energy dispersive X-ray spectroscopy, marking the swelling response as a peculiar nexus of fluorinated interfacial positioning and delocalized electrostatic repulsion. Results from the current study hold promise for exploiting the physiochemical response of PNIPAM to assess TPFOS's concentration.  相似文献   
8.
Time‐dependent demixing enthalpy recovery behavior of aqueous poly(vinyl methyl ether) (PVME) solutions exhibits distinct recovery characteristics in three concentration regions. The absence of recovery behavior below a water concentration of 38.3 wt % indicates that the PVME coil is in a globular state. The typically sigmoidal recovery behavior of demixing enthalpy above 38.3 wt % is ascribed to the reswelling of the collapsed polymer coils induced by the entropic effect. The increase in difference between the upper and lower limits indicates the continued swelling of the PVME coils. Above 65 wt %, a dominant diluting effect can be observed, and a much longer phase separation time is needed to reach the expected lower limit. In contrast, the recovery of demixing enthalpy in a wide range of water concentration (from 38.3 to 90 wt %) exhibits the same feature. The infrared spectroscopy results are in agreement with the above macroscopic differential scanning calorimetry results. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 142–151  相似文献   
9.
An efficient and fast dispersive magnetic solid phase extraction method was developed using MIL‐101(Cr)/poly (mercaptobenzothiazole)@magnetite nanoparticles for the preconcentration and determination of nitrophenols in river and rain water samples. High‐performance liquid chromatography‐Ultraviolet instrument was applied for the analysis of target nitrophenols. The effect of several variables on the extraction performance was explored via design of experiment approach. Limits of detection and linear dynamic ranges were attained in the range of 0.05–0.10 µg/L and 0.2–250 µg/L, respectively. The enrichment factors were in the range of 317–363. The precision (n = 3) of dispersive magnetic solid phase extraction method was in the range of 5.3–6.8%. Eventually, the method was utilized for the analysis of target nitrophenols in river and rain water samples.  相似文献   
10.
The influences of the molar mass (low, medium, and high) and content of poly(vinyl alcohol) (PVOH) dispersed by melt-blending in an ethylene vinyl alcohol (EVOH) copolymer on the morphology, microstructure, thermal, mechanical, and oxygen barrier properties were investigated. Multilayer films with external low-density polyethylene layers and inner EVOH/PVOH blend layer and respective monolayer films were elaborated and characterized. EVOH/PVOH blends exhibited a good compatibility because of the initial presence of PVOH segments in EVOH. The detailed quantitative analysis of the morphology performed for all blends showed that the finest dispersion was obtained with the PVOH with the lowest molar mass. The properties of the films as a function of the PVOH content and its molar mass were determined herein. Significant improvement of barrier properties was obtained at moderated water activities (up to aw = 0.6) by using the PVOH with the lowest molar mass. Compared to the neat EVOH material, the oxygen permeability coefficients decreased by a factor 2 by adding 15 vol% PVOH while the thermal and mechanical properties remained similar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号