首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   69篇
  国内免费   9篇
化学   215篇
晶体学   1篇
数学   1篇
物理学   69篇
  2023年   2篇
  2022年   11篇
  2021年   16篇
  2020年   16篇
  2019年   23篇
  2018年   12篇
  2017年   20篇
  2016年   28篇
  2015年   16篇
  2014年   38篇
  2013年   29篇
  2012年   21篇
  2011年   25篇
  2010年   11篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2001年   2篇
排序方式: 共有286条查询结果,搜索用时 406 毫秒
1.
Two dithienocyclopentafluorene-based small-molecule acceptors (SMAs) were developed that feature methylene-functionalized conjugated side chains, to study the effect of arylmethylene substitution and its number on structure, optoelectronic properties and device performance. Results showed that two SMAs have better absorption properties and planarity, lower bandgaps and higher LUMOs compared with the control SMA without conjugated side chains. The synthesized SMAs were tested in polymer solar cells for examples of their applicability. This work argues that the introduction of methylene-functionalized conjugated side chains has great potential in tuning molecular structure, optoelectronic properties, device physics and photovoltaic performance of SMAs.  相似文献   
2.
The synthesis, characterization, and solar cell application of newly developed two semiconducting polymers containing phenanthro[1,2‐b:8,7‐b′]dithiophene (PDT) and an isoindigo (IID) unit are described. In addition, a relationship between substitution position of side chains and molecular weights of the polymers and their solar cell performance are also discussed. Because of the installation of alkyl side chains onto sterically less hindered positions, PDT‐IID copolymers 12OD‐2 and 8OD‐2 have stronger intermolecular interaction than that of the previously reported copolymer 12OD . In low‐Mn polymers 12OD‐2 and 8OD‐2 formed high‐crystalline thin film with higher face‐on ratio than that of 12OD , but their unsuitable large‐scale phase separation suppressed their efficient photocurrent generation, leading to poor PCE of 2–3%. However, the surface morphology of 12OD‐2 and 8OD‐2 blended films are drastically improved by increasing Mn, which leads to the enhancement of Jsc and higher PCE of up to 4.3%. However, high‐Mn polymers 12OD‐2 and 8OD‐2 formed high‐crystalline film with about 10–15% lower face‐on ratio than that of high‐Mn polymer 12OD , leading to poor hole transporting ability, and thus lower Jsc and PCE. From this result, too much strong intermolecular interaction promotes the formation of unsuitable edge‐on orientation in blended films. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1757–1767  相似文献   
3.
The first use of PSnb‐PEOmb‐PSn block copolymers (PS = polystyrene, PEO = poly(ethylene oxide)) as solid hosts for iodine/iodide electrolytes in dye‐sensitized solar cells (DSSCs) is described. Using the benchmark photosensitizer N719, DSSC based on the quasi solid‐state electrolytes afforded efficiencies up to 6.7%, to be compared with an efficiency of 7.3% obtained in similar conditions with a conventional iodine/iodide liquid electrolyte. By varying the PS:PEO relative volume ratio in the block copolymers different properties and morphologies were obtained. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 719–727  相似文献   
4.
Organometallic complexes (OMCs) consisting of organic and metal active moieties have shown immense potential for application in solar cells. The diverse structure, rich porosity, and unique charge centers of OMCs enable them to be functional in solar cells. In this review, we introduced four types of OMCs, such as crown organometallic complexes, β-diketone metal complexes, cyclometallic complexes, and main chain metal-containing polymers, providing an in-depth analysis of the structure-performance relationship. OMCs could serve as active or interlayer materials in a variety of solar cell systems such as organic solar cells, perovskite solar cells, and dye-sensitized solar cells, especially some metals to improve the photoelectric performance of the device as dopants. In the end, perspectives on the opportunities and challenges of OMCs are given.  相似文献   
5.
Porphyrin–fullerene dyads are promising candidates for organic photovoltaic devices. The electron-transfer (ET) properties of the molecular devices depend significantly on the mutual position of the donor and acceptor. Recently, a new type of molecular isomerism (akamptisomerism) has been discovered. In the present study, we explore how photoinduced ET can be modulated by passing from one akamptisomer to another. To this aim, four akamptisomers of the quinoxalinoporphyrin–[60]fullerene complex are selected for computational study. The most striking finding is that, depending on the isomer, the porphyrin unit in the dyad can act as either electron donor or electron acceptor. Thus, the stereoisomeric diversity allows one to change the direction of ET between the porphyrin and fullerene moieties. To understand the effect of akamptisomerism on the photoinduced ET processes, a detailed analysis of initial and final states involved in the ET is performed. The computed rate for charge separation is estimated to be in the region of 1–10 ns−1. The formation of a long-living quinoxalinoporphyrin anion radical species is predicted.  相似文献   
6.
《Tetrahedron》2019,75(38):130514
This study presents the synthesis, characterization, and electrochemical properties of four new dialkoxymethanofullerenes, as well as their performance in organic solar cells (OSCs) devices. Dialkoxymethanofullerenes were synthesized in 27%–32% yield by thermolysis of dialkoxyoxadiazolines and reaction with C60 under reflux in toluene. The prepared compounds were then characterized and used for the first time as electron-acceptor materials in thin-film bulk heterojunction OSCs with PBTZT-stat-BDTT-8 as the electron donor material. The devices made with ethoxy-hexyloxymethanofullerene and methoxy-hexyloxymethanofullerene exhibited optimal power conversion efficiencies (PCEs) of 3.79% and 4.65%, with open-circuit voltage of 0.832 and 0.831 V, respectively. In contrast, the devices made with ethoxy-ethoxymethanofullerene and methoxy-ethoxymethanofullerene exhibited very low PCEs of <0.01% for both, indicating a large impact of the substituents on device performance.  相似文献   
7.
The stability of poly(3‐hexylthiophene) (P3HT) helical structure has been investigated in vacuo and in amorphous polymer surrounding via molecular dynamics‐based simulations at temperatures below and above the P3HT melting point. The results show that the helical chain remains stable at room temperature both in vacuo and in amorphous surrounding, and promptly loses its structure at elevated temperatures. However, the amorphous surrounding inhibits the destruction of the helix at higher temperatures. In addition, it is shown that the electrostatic interactions do not significantly affect the stability of the helical structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2448–2456  相似文献   
8.
实现均匀照度光伏聚光镜设计   总被引:2,自引:0,他引:2  
荆雷  王尧  赵会富  许文斌  刘华  卢振武 《光学学报》2014,34(2):208001-85
为满足聚光光伏系统的聚光需求,解决传统点聚焦式聚光光伏系统中聚焦光斑不均匀、径长比过大和聚光比较小的缺点,在不增加二次匀光器件的前提下,设计了径长比小、聚焦光斑相对均匀、聚光比高的聚光光伏系统。根据几何光学柯勒照明原理、等光程原理和反射定律,通过数值求解等光程方程组获得聚光镜各个面型的轮廓曲线。利用TracePro软件对所设计的聚光系统进行光线追迹模拟,结果表明:在聚光比为725的情况下,聚焦光斑最大照度仅为太阳照度的2300倍,是点聚焦情况下的1/10左右,系统的径长比为0.3,接收角为0.72°。系统设计实现了结构紧凑,聚光性能高的设计目标,为高倍聚光光伏系统的小型化,简单化提供了一种有效的解决途径。  相似文献   
9.
Accurate determination of both fundamental and optical gap is necessary for designing molecules relevant for organic photovoltaics. Here, we study how range-separated density functionals reproduce frontier orbital energies, HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gaps, and optical gaps for molecules relevant for organic photovoltaics. In this study, we consider 12 different range-separated density functional for computing HOMO energy, HOMO–LUMO gap, and optical gap which are compared with available experimental and reported GW values. We found that the reproduction of desired photovoltaic properties primarily depend on range separation parameter. Moreover, the tested functionals are comparable with OT-BNL functional.  相似文献   
10.
A soluble thiophene copolymer having polar and non polar side groups was synthesized and its photovoltaics performance was investigated. The synthesized copolymer was characterized using Nuclear Magnetic Resonance (NMR) and optical spectroscopy. Dye sensitized solar cells were fabricated using this copolymer as sensitizer. An open-circuit voltage of 0.50V, a short-circuit current density of 1.195 mA/cm2 and an overall power conversion efficiency of 0.3% were measured.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号