首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1742篇
  免费   571篇
  国内免费   42篇
化学   2294篇
晶体学   2篇
力学   1篇
综合类   1篇
数学   2篇
物理学   55篇
  2024年   1篇
  2023年   26篇
  2022年   34篇
  2021年   62篇
  2020年   176篇
  2019年   105篇
  2018年   83篇
  2017年   40篇
  2016年   154篇
  2015年   181篇
  2014年   183篇
  2013年   149篇
  2012年   168篇
  2011年   125篇
  2010年   115篇
  2009年   105篇
  2008年   98篇
  2007年   82篇
  2006年   98篇
  2005年   84篇
  2004年   71篇
  2003年   65篇
  2002年   14篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   12篇
  1997年   25篇
  1996年   10篇
  1995年   19篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   9篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1975年   2篇
排序方式: 共有2355条查询结果,搜索用时 218 毫秒
1.
The visible-light-induced arylation of tertiary phosphines with aryl(mesityl)iodonium triflates to produce the quaternary phosphonium salts occurs under mild, metal, and catalyst-free conditions. Photo-excited EDA complexes between diaryliodonium salts and phosphines supposedly enable this transformation, which is difficult to achieve through the traditional ground-state reactions. Demonstrating high functional group tolerance, broad scope, and complete selectivity of the aryl group transfer, the method is particularly compatible with sterically congested phosphines, which are challenging under metal-based catalytic methods.  相似文献   
2.
Copper(I) complexes (CICs) are of great interest due to their applications as redox mediators and molecular switches. CICs present drastic geometrical change in their excited states, which interferes with their luminescence properties. The photophysical process has been extensively studied by several time-resolved methods to gain an understanding of the dynamics and mechanism of the torsion, which has been explained in terms of a Jahn–Teller effect. Here, we propose an alternative explanation for the photoinduced structural change of CICs, based on electron density redistribution. After photoexcitation of a CIC (S0→S1), a metal-to-ligand charge transfer stabilizes the ligand and destabilizes the metal. A subsequent electron transfer, through an intersystem crossing process, followed by an internal conversion (S1→T2→T1), intensifies the energetic differences between the metal and ligand within the complex. The energy profile of each state is the result of the balance between metal and ligand energy changes. The loss of electrons originates an increase in the attractive potential energy within the copper basin, which is not compensated by the associated reduction of the repulsive atomic potential. To counterbalance the atomic destabilization, the valence shell of the copper center is polarized (defined by ∇2ρ(r) and ∇2Vne(r)) during the deactivation path. This polarization increases the magnitude of the intra-atomic nuclear–electron interactions within the copper atom and provokes the flattening of the structure to obtain the geometry with the maximum interaction between the charge depletions of the metal and the charge concentrations of the ligand.  相似文献   
3.
4.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
5.
6.
To improve the photocatalytic properties of coordination polymers under irradiation in the visible‐light region, coordination polymer nanobelts (CPNB) were loaded on functional carbon fiber (FCF) through the use of a simple colloidal blending process. The resulting coordination polymer nanobelt loaded functional carbon fiber composite material (CPNB/FCF) exhibited dramatically improved photocatalytic activity for the degradation of rhodamine B (RhB) under visible‐light irradiation. Optical and electrochemical methods illustrated the enhanced photocatalytic activity of CPNB/FCF originated from high separation efficiency of photogenerated electrons and holes on the interface of CPNB and FCF, which was produced by the synergy effect between them. In the composite material, the role of FCF could be described as photosensitizer and good electron transporter. For FCF, the number of functional groups on its surface has a significant influence on the photocatalytic performance of the resulting CPNB/FCF composite material, and an ideal FCF carrier was obtained as a highly efficient CPNB/FCF photocatalyst. CPNB/FCF showed outstanding stability during the degradation of rhodamine B (RhB); thus, the material is suitable for use as a photocatalyst in the treatment of organic dyes in water.  相似文献   
7.
The development of more active C? H oxidation catalysts has inspired a rapid, scalable, and stereoselective assembly of multifunctional piperazines through a [3+3] coupling of azomethine ylides. A combination of visible‐light irradiation and aluminum organometallics is essential to promote this transformation, which introduces visible‐light photochemistry of main‐group organometallics and sets the basis for new and promising catalysts.  相似文献   
8.
A heterostructured semiconductor–metal ZnO?Ag nanoparticle (NP) composite was constructed through a straightforward photocatalytic strategy by using UV irradiation of ZnO NPs and an aqueous solution of Ag precursor. The ZnO?Ag NP composites serve as an effective cathode‐modifying layer in polymer solar cells (PSCs) with increased short‐circuit current density owing to the light‐trapping effect, and improved optical and electrical conductivity properties compared with pure ZnO NPs. The Ag NPs, which are photodeposited in situ on ZnO NPs, can act as effective antennas for incident light to maximize light harvesting and minimize radiative decay or nonradiative losses, consequently resulting in the enhanced photogeneration of excitons in PSCs. Systematic photoelectron and ‐physical investigations confirm that heterostructured ZnO?Ag NPs can significantly improve charge separation, transport, and collection, as well as lower charge recombination at the cathode interface, leading to a 14.0 % improvement in air‐processed device power conversion efficiency. In addition, this processable, cost‐effective, and scalable approach is compatible with roll‐to‐roll manufacturing of large‐scale PSCs.  相似文献   
9.
A strategy for the enantioselective [2+2] photocycloaddition of isoquinolones with alkenes is presented, in which the formation of a supramolecular complex between a chiral template and the substrate ensures high enantioface differentiation by shielding one face of the substrate. Fifteen different electron‐deficient alkenes and ten different substituted isoquinolones undergo efficient photocycloaddition, yielding the cyclobutane products in excellent yields and with outstanding regio‐, diastereo‐ and enantioselectivities (up to 99 % ee). The mechanism of the reaction is investigated by means of triplet sensitization/quenching and radical clock experiments, the results of which are consistent with the involvement of a triplet excited state and a 1,4‐biradical intermediate. The variety of functionalized cyclobutanes obtained using this approach can be further increased by straightforward synthetic transformations of the photoadducts, allowing rapid access to libraries of compounds for various applications.  相似文献   
10.
The incorporation of acrylic functionality into caffeine enables the preparation of a vast array of novel thermoplastics and thermosets. A two‐step derivatization provided a novel caffeine‐containing methacrylate monomer capable of free radical polymerization. Copolymers of 2‐ethylhexyl methacrylate and caffeine methacrylate (CMA) allowed for a systematic study of the effect of covalently bound caffeine on polymer properties. 1H NMR and UV‐vis spectroscopy confirmed caffeine incorporation at 5 and 13 mol %, and SEC revealed the formation of high molecular weight (co)polymers (>40,000 g/mol). CMA incorporation resulted in a multistep degradation profile with initial mass loss closely correlating to caffeine content. Differential scanning calorimetry, rheological, and thermomechanical analysis demonstrated that relatively low levels of CMA increased the glass transition temperature, resulting in higher moduli and elucidating the benefits of incorporating caffeine into polymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2829–2837  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号