首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   7篇
  国内免费   3篇
化学   18篇
物理学   3篇
  2023年   1篇
  2021年   2篇
  2019年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  1985年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Ternary core–shell heterostructured rutile@anatase@CrxOy nanorod arrays were elaborately designed as photoanodes for efficient photoelectrochemical water splitting under visible‐light illumination. The four‐fold enhanced and stabilized visible‐light photocurrent highlights the unique role of the interim anatase layer in accelerating the interfacial charge transfer from the CrxOy chromophore to rutile nanorods.  相似文献   
2.
3.
Multidimensional nano‐heterostructures (NHSs) that have unique dimensionality‐dependent integrative and synergic effects are intriguing but still underdeveloped. Here, we report the first helical 1D/2D epitaxial NHS between CdS and ZnIn2S4. Experimental and theoretical studies reveal that the mismatches in lattice and dangling bonds between 1D and 2D units govern the growth procedure. The resulting well‐defined interface induces the delocalized interface states, thus facilitate the charge transfer and enhance the performance in the photoelectrochemical cells. We foresee that the mechanistic insights gained and the electronic structures revealed would inspire the design of more complex 1D/2D NHSs with outstanding functionalities.  相似文献   
4.
5.
Nanopatterning provides facile process to well-arrayed mesoporous inorganic oxide films at low cost by using readily available pastes and elastomeric nanostamps. The fabricated nanopattern boosted the light-harvesting efficiency of dye-sensitized solar cells (DSSCs) by a light-trapping technique. The iodine-free solid-state DSSCs showed a 40 % increase in the current density and high efficiency (7.03 %).  相似文献   
6.
In this study, we provide the reader with an overview of quantum dot application in solar cells to replace dye molecules, where the quantum dots play a key role in photon absorption and excited charge generation in the device. The brief shows the types of quantum dot sensitized solar cells and presents the obtained results of them for each type of cell, and provides the advantages and disadvantages. Lastly, methods are proposed to improve the efficiency performance in the next researching.  相似文献   
7.
8.
利用一种新的原位水解沉积方法,以在高湿度空气中老化的甲醇中作为溶剂,通过乙醇钽水解而成前驱体微球颗粒沉积,制备出了高效的Ta3N5微球光电极,其1.6 V(vs RHE)电极电位下的光电流值达到了6.6 mA·cm-2。相反地,在新鲜的甲醇溶液中没有钽前驱体微球颗粒沉积。这表明甲醇中水的含量对Ta3N5微球光电极的形成十分重要。另外,本制备方法也能方便地在其他透明导电衬底上制备出Ta3N5。  相似文献   
9.
A new synthetic method to fabricate Ti3+‐modified, highly stable TiO2 photoanodes for H2O oxidation is reported. With Ti foil as both the conducting substrate and the Ti3+/Ti4+ source, one‐dimensional blue Ti3+/TiO2 crystals were grown by a one‐step hydrothermal reaction. The concentration of Ti3+ was further tuned by N2H4 reduction, leading to a greater photoelectrocatalytic activity, as evidenced by a high photocurrent density of 0.64 mA cm?2 at 1.0 V vs RHE under simulated AM 1.5 G illumination. Electron paramagnetic resonance and Mott–Schottky plots reveal that higher charge‐carrier density owing to N2H4 reduction contributes to the observed improvement. The generality of this synthesis method was demonstrated by its effectiveness in improving the performance of other types of photoanodes. By integrating the advantages of the 1D TiO2 architecture with those of Ti3+ self‐doping, this work provides a versatile tool toward the fabrication of efficient TiO2 photoanodes.  相似文献   
10.
Two types of dielectric barrier discharges (DBDs), volume DBD (called Industrial Corona) and coplanar DBD, were used for low temperature (70 °C) atmospheric pressure plasma mineralization of mesoporous methyl‐silica/titanium dioxide nanocomposite photoanodes. The photoanodes with a thickness of approx. 300 nm were inkjet‐printed on flexible polyethylene terephthalate (PET) foils. Plasma treatments of both DBDs led to changes in the chemical stoichiometry and morphology of the mesoporous photoanodes, resulting in a significant increase of the work function from approx. 4.0 to 4.3 eV and 4.8 eV, after plasma mineralization with volume DBD and coplanar DBD, respectively. We also studied the effect of plasma mineralization on the photoelectrochemical properties of the flexible mesoporous TiO2 photoanodes. Plasma mineralization with volume DBD and coplanar DBD showed different effects on the generated photocurrent in the photoanodes. Although the plasma mineralization with volume DBD showed only a minor effect on the photocurrent, plasma mineralization with coplanar DBD led to significantly higher photocurrents. We found that the enhancement of the photoelectrochemical properties was related to the homogeneity of the plasma‐treated surfaces—arising from different spatial properties of the plasma between volume and coplanar DBDs. Furthermore, the results showed that plasma mineralization using coplanar DBD can effectively change the energy levels of the surface. This resulted in the enhancement of the work function and the photoelectrochemical properties of the mesoporous TiO2 photoanodes. This contribution shows that coplanar arrangement of electrodes in DBDs generates plasma of higher efficacy compared with standard volume DBD that is currently often used in industrial processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号