首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2401篇
  免费   643篇
  国内免费   228篇
化学   2860篇
晶体学   7篇
力学   126篇
综合类   14篇
数学   109篇
物理学   156篇
  2024年   2篇
  2023年   32篇
  2022年   64篇
  2021年   75篇
  2020年   207篇
  2019年   156篇
  2018年   169篇
  2017年   113篇
  2016年   192篇
  2015年   196篇
  2014年   206篇
  2013年   289篇
  2012年   182篇
  2011年   182篇
  2010年   156篇
  2009年   135篇
  2008年   150篇
  2007年   122篇
  2006年   138篇
  2005年   90篇
  2004年   95篇
  2003年   91篇
  2002年   36篇
  2001年   34篇
  2000年   15篇
  1999年   9篇
  1998年   15篇
  1997年   30篇
  1996年   9篇
  1995年   10篇
  1994年   13篇
  1993年   14篇
  1992年   10篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
排序方式: 共有3272条查询结果,搜索用时 15 毫秒
1.
With the development of green chemistry, it is still a challenge to maintain the unstable valence state of the metal in heterogeneous catalysts and realize new catalytic synthesis methods. In this paper, it is reported that an univalent copper nanocomposite (Cu@Al/SBA-15) can efficiently catalyze the formation of novel amino-containing benzotriazoles with great fluorescence properties in a new synthetic strategy. Subsequently, its application is further verified by an acylation reaction to produce a series of novel benzotriazoles derivatives with high yield. It is worth noting that the Cu@Al/SBA-15 nanocomposites not only enable the reaction completed with high yield in a short time, but can also be recycled many times without a significant reduction in activity, and the leaching of copper and aluminum species in reaction system is negligible. Finally, the detailed and feasible reaction mechanism is also provided.  相似文献   
2.
Gold nanoparticle catalysts are important in many industrial production processes. Nevertheless, for traditional C ?C cross‐coupling reactions they have been rarely used and Pd catalysts usually give a superior performance. Herein we report that in situ formed gold metal nanoparticles are highly active catalysts for the cross coupling of allylstannanes and activated alkylbromides to form C ?C bonds. Turnover numbers up to 29 000 could be achieved in the presence of active carbon as solid support, which allowed for convenient catalyst recovery and reuse. The present study is a rare case where a gold metal catalyst is superior to Pd catalysts in a cross‐coupling reaction of an organic halide and an organometallic reagent.  相似文献   
3.
Immobilization of metal ions onto inorganic supports has very interesting biological, industrial, and catalysis applications. In this study, CoFe2O4@SiO2@PUF@Zn(OAc)2 nanostructure was successfully fabricated by immobilization of zinc acetate on the surface of poly(urea-formaldehyde) supported on magnetic CoFe2O4@SiO2 nanoparticles through a layer-by-layer assembly. The structure of hybrid nanoparticles was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, energy-dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area analysis, scanning electron microscopy, and transmission electron microscopy. Zinc-poly(urea-formaldehyde) supported on magnetic nanoparticles (MNPs@SiO2@PUF@Zn) was successfully used for the synthesis of spirooxindolopyran and spirooxindoloxanthene derivatives in aqueous medium as an environmentally benign condition. High yields, short reaction times, green solvent, reusability without significant reduction in catalytic activity, and simple separation of the catalyst using an external magnet along with environmental compatibility are some benefits of this procedure.  相似文献   
4.
Chromene substructure is an important structural motif present in a variety of medicines, natural products, and materials showing biological activities. Here, a simple and convenient procedure for the synthesis of 3,4-dihydropyrano[3,2-c]chromene derivatives is described. For this purpose, Fe3O4 nanoparticles supported on β-cyclodextrin-guanidine were successfully prepared and used as catalyst. The structure of this catalyst was assigned by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, and vibrating sample magnetometer techniques. The prepared nanocomposites were used as a highly active, heterogeneous, and reusable nanocatalyst for the one-pot, three-component reaction of 4-hydroxycoumarin, aromatic aldehydes, and ethyl cyanoacetate. This method has advantages such as mild conditions, high yields, easy workup and simple purification of products, little catalyst loading, cost efficiency, and reusability of the catalyst.  相似文献   
5.
A novel, efficient and reusable heterogeneous catalytic assembly of peroxophosphotungstate held in an ionic liquid brush was synthesized and an extraction and catalytic oxidative desulfurization (ECODS) procedure was developed for a model oil of benzothiophene (BT) and dibenzothiophene (DBT) using 30 wt% hydrogen peroxide as terminal oxidant and methanol as solvent under mild conditions. Several factors that affect sulfur removal were investigated in detail. The highest sulfur removal can reach 100% for BT in 7 h at 70 °C when the molar ratio of H2O2, S and catalyst is 10:1:0.025. The sulfur removal for DBT can also reach 100% in 4 h at 50 °C with the same molar ratio of H2O2, S and catalyst. The experimental results demonstrate that this ECODS process has no apparent scale‐up effect. The catalyst can be easily recovered (via simple filtration) and recycled five times without a significant decrease in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
7.
The isomorphous partial substitution of Zn2+ ions in the secondary building unit (SBU) of MFU‐4l leads to frameworks with the general formula [MxZn(5–x)Cl4(BTDD)3], in which x≈2, M=MnII, FeII, CoII, NiII, or CuII, and BTDD=bis(1,2,3‐triazolato‐[4,5‐b],[4′,5′‐i])dibenzo‐[1,4]‐dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU‐4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis‐NIR, TGA, and gas sorption measurements. Several MFU‐4l derivatives show high catalytic activity in a liquid‐phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co‐ and Cu derivatives with chloride side‐ligands are the most active catalysts. Upon thermal treatment, several side‐ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, CoII‐azide units in the SBU of Co‐MFU‐4l are converted into CoII‐isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of CuII‐fluoride units with H2 at 240 °C leads to CuI and proceeds through the heterolytic cleavage of the H2 molecule.  相似文献   
8.
The ability to control material properties in space and time for functionally graded viscoelastic materials makes them an asset where they can be adapted to different design requirements. The continuous microstructure makes them advantageous over conventional composite materials. Functionally graded porous structures have the added advantage over conventional functionally graded materials of offering a significant weight reduction compared to a minor drop in strength. Functionally graded porous structures of acrylonitrile butadiene styrene (ABS) had been fabricated with a solid‐state constrained foaming process. Correlating the microstructure to material properties requires a deterministic analysis of the cellular structure. This is accomplished by analyzing the scanning electron microscopy images with a locally adaptive image threshold technique based on variational energy minimization. This characterization technique of the cellular morphology is analyst independent and works very well for porous structures. Inferences are drawn from the effect of processing on microstructure and then correlated to creep strain and creep compliance. Creep is strongly correlated to porosity and pore sizes but more associated to the size than to porosity. The results show the potential of controlling the cellular morphology and hence tailoring creep strain/compliance of ABS to some desired values. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 795–803  相似文献   
9.
Sulfonic acid based mesostructures (SAMs) have been developed in recent years and have important catalytic applications. The primary applications of these materials are in various organic synthesis reactions, such as multicomponent reactions, carbon–carbon bond couplings, protection reactions, and Fries and Beckman rearrangements. This review aims to provide an overview of the recent developments in the field of SAMs with a particular emphasis on the reaction scope and advantages of heterogeneous solid acid catalysts.  相似文献   
10.
An efficient and practical route to β‐keto sulfones has been developed through heterogeneous oxidative coupling of oxime acetates with sodium sulfinates by using an MCM‐41‐supported Schiff base‐pyridine bidentate copper (II) complex [MCM‐41‐Sb,Py‐Cu (OAc)2] as the catalyst and oxime acetates as an internal oxidant, followed by hydrolysis. The reaction generates a variety of β‐keto sulfones in good to excellent yields. This new heterogeneous copper (II) catalyst can be easily prepared via a simple procedure from readily available and inexpensive reagents and exhibits the same catalytic activity as Cu (OAc)2. MCM‐41‐Sb,Py‐Cu (OAc)2 is also easy to recover and is recyclable up to eight times with almost consistent activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号