首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   80篇
  国内免费   450篇
化学   1691篇
晶体学   17篇
力学   12篇
综合类   10篇
数学   3篇
物理学   245篇
  2023年   27篇
  2022年   61篇
  2021年   89篇
  2020年   114篇
  2019年   50篇
  2018年   48篇
  2017年   42篇
  2016年   50篇
  2015年   43篇
  2014年   75篇
  2013年   87篇
  2012年   80篇
  2011年   97篇
  2010年   53篇
  2009年   89篇
  2008年   93篇
  2007年   112篇
  2006年   96篇
  2005年   101篇
  2004年   74篇
  2003年   63篇
  2002年   58篇
  2001年   52篇
  2000年   38篇
  1999年   37篇
  1998年   23篇
  1997年   24篇
  1996年   25篇
  1995年   26篇
  1994年   13篇
  1993年   21篇
  1992年   10篇
  1991年   13篇
  1990年   10篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1981年   3篇
  1980年   12篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
排序方式: 共有1978条查询结果,搜索用时 31 毫秒
1.
Jia-Hui Wang 《中国物理 B》2021,30(11):110204-110204
We fabricated a microfluidic chip with simple structure and good sealing performance, and studied the influence of the electric field on THz absorption intensity of liquid samples treated at different times by using THz time domain spectroscopy system. The tested liquids were deionised water and CuSO4, CuCl2, NaHCO3, Na2CO3 and NaCl solutions. The transmission intensity of the THz wave increases as the standing time of the electrolyte solution in the electric field increases. The applied electric field alters the dipole moment of water molecules in the electrolyte solution, which affects the vibration and rotation of the whole water molecules, breaks the hydrogen bonds in the water, increases the number of single water molecules and leads to the enhancement of the THz transmission spectrum.  相似文献   
2.
Superhalogens, owing to their large electron affinity (EA, exceeding those of any halogen atom), play an essential role in physical chemistry as well as new material design. They have applications in hydrogen storage and lithium-ion batteries. Owing to the unique geometries and electronic features of magnesium-based clusters, their potential to form a new class of lithium salts has been investigated here theoretically. The idea is assessed by conducting ab initio computations on Li+/MgnF2n+1-2mOm compounds (n=2, 3; m=0-3) and analyzing their performance as potential Li-ion battery electrolytes. The Mg3F7 cluster, with large electron binding energy (EA of 7.93 eV), has been proven to serve as a building block for lithium salts. It is shown that, apart from high electronic stability, the new superhalogen-based electrolytes exhibit a set of desirable properties, including a large band gap, high electrolyte stability window, easy mobility of the Li+, and favorable insensitivity to water.  相似文献   
3.
4.
Cu‐doped Ni‐based metal–organic frameworks (MOFs) nanomaterials fabricated through a one‐pot hydrothermal reaction were characterized, and their performance as supercapacitor electrode materials was further studied for the first time. The results indicated that the doping of foreign metals and the introduction of K3[Fe(CN)6] in the KOH electrolyte significantly improve the performance of the supercapacitor. The results indicated that the Ni2.6Cu0.4 MOFs material shows the highest specific capacitance (1282 F g?1 at 1 A g?1 in mixed 2 M KOH and 0.1 M K3[Fe(CN)6]) and optimal capacitance retention (85.7% after 2000 cycles). This work provides a feasible optimization strategy for the construction of MOFs‐based supercapacitor electrode materials with excellent performance, and also provides a reliable experimental and theoretical basis for practical industrial production.  相似文献   
5.
The trench on a printed circuit board was reconstructed to fabricate a microfluidic framework that allows low-cost production for small quantities and integration with multifunctional elements. An on-chip electrolyte regulator was thus proposed on this platform to analyze diffusion properties in laminar flow. A numerical model was developed, highlighting the interplay between the electrolyte migration and hydrodynamic properties. Solutions with dissolved sodium chloride were simulated and experimentally tested for the regulation of electrical conductivity under the guidance of the normalized Nernst-Planck equation. The diffusion mechanism and the resulting concentration field were demonstrated in detail. This approach provides a satisfactory manufacturing method and a useful tool for integrated microfluidic systems.  相似文献   
6.
A zinc containing metal–organic gel (Zn-MOG) with embedded free ions, which exhibits self-healing properties, has been synthesized for application in supercapacitors. The activated carbon-based flexible supercapacitor device with the MOG electrolyte has a broad potential window of 2.1 V, with high retention of specific capacitance compared to the traditional polyvinyl alcohol (PVA)-based gel. The Zn-MOG does not require an additional electrolyte. The sodium and sulphate ions embedded in the MOG are sufficient enough for the charge storage.  相似文献   
7.
Electrocatalysis is the most promising strategy to generate clean energy H2, and the development of catalysts with excellent hydrogen evolution reaction (HER) performance at high current density that can resist strong alkaline and acidic electrolyte environment is of great significance for practical industrial application. Therefore, a P doped MoS2@Ni3S2 nanorods array (named P-NiMoS) was successfully synthesized through successive sulfuration and phosphorization. P-NiMoS presents a core/shell structure with a heterojunction between MoS2 (shell) and Ni3S2 (core). Furthermore, the doping of P modulates the electronic structure of the P-NiMoS; the electrons transfer from the t2g orbital of Ni element to the eg empty orbital of Mo element through the Ni−S−Mo bond at the Ni3S2 and MoS2 heterojunction, facilitating the hydrogen evolution reaction. As a result, P-NiMoS exhibits excellent HER activity; the overpotential is 290 mV at high current density of 250 mA cm−2 in alkaline electrolyte, which is close to Pt/C (282 mV@250 mA cm−2), and P-NiMoS can stably evolve hydrogen for 48 h.  相似文献   
8.
9.
The first use of PSnb‐PEOmb‐PSn block copolymers (PS = polystyrene, PEO = poly(ethylene oxide)) as solid hosts for iodine/iodide electrolytes in dye‐sensitized solar cells (DSSCs) is described. Using the benchmark photosensitizer N719, DSSC based on the quasi solid‐state electrolytes afforded efficiencies up to 6.7%, to be compared with an efficiency of 7.3% obtained in similar conditions with a conventional iodine/iodide liquid electrolyte. By varying the PS:PEO relative volume ratio in the block copolymers different properties and morphologies were obtained. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 719–727  相似文献   
10.
Since hundreds of studies on photoanodes and cathodes show that the electrode/electrolyte interfaces represent a key aspect at the base of dye‐sensitized solar cell (DSSC) performances, it is reported here that these interfaces can be managed by a smart design of the spatial composition of quasi‐solid electrolytes. By means of a cheap, rapid, and green process of photoinduced polymerization, composition‐tailored polymer electrolyte membranes (PEMs) with siloxane‐enriched surfaces are prepared, and their properties are thoroughly described. When assembled in DSSCs, the interfacial action promoted by the composition‐tailored PEMs enhances the photocurrent and fill factor values, thus increasing the global photovoltaic conversion efficiency with respect to the non‐modified PEMs. Moreover, the presence of the siloxane‐chain‐enriched surface increases the hydrophobicity and reduces the water vapor permeation into the device, thus enhancing the cell′s durability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号