首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1551篇
  免费   81篇
  国内免费   215篇
化学   1690篇
晶体学   4篇
力学   5篇
综合类   11篇
数学   2篇
物理学   135篇
  2024年   1篇
  2023年   11篇
  2022年   23篇
  2021年   69篇
  2020年   54篇
  2019年   38篇
  2018年   43篇
  2017年   64篇
  2016年   76篇
  2015年   46篇
  2014年   54篇
  2013年   125篇
  2012年   60篇
  2011年   60篇
  2010年   59篇
  2009年   84篇
  2008年   106篇
  2007年   72篇
  2006年   91篇
  2005年   90篇
  2004年   54篇
  2003年   52篇
  2002年   52篇
  2001年   51篇
  2000年   46篇
  1999年   47篇
  1998年   54篇
  1997年   46篇
  1996年   47篇
  1995年   48篇
  1994年   31篇
  1993年   14篇
  1992年   14篇
  1991年   19篇
  1990年   3篇
  1989年   6篇
  1988年   11篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
排序方式: 共有1847条查询结果,搜索用时 15 毫秒
1.
A dispersive solid-phase extraction method based on a new sorbent has been performed on plasma and wastewater samples to determine metoprolol by high-performance liquid chromatography–tandem mass spectrometry. In this study, the analyte was adsorbed from the samples onto microcrystalline cellulose as a green and efficient sorbent and then eluted for use in the determination step. In the mass spectrometer, the analyte was detected in the positive mode and selectivity of the analysis was increased by sequential mass analysis through multiple reaction monitoring. All of the effective parameters in the extraction of metoprolol from plasma and wastewater were optimized. Under optimal conditions the method was linear in the ranges of 1–1,000 and 0.1–1,000 ng/ml in plasma and wastewater samples, respectively. The detection limits of the method were 0.30 and 0.03 ng/ml in plasma and wastewater samples, respectively. The data showed that the method provides low detection limit, wide linear range, good precision and high extraction recovery. Finally several plasma and wastewater samples were successfully analyzed using the method. The use of a small amount of a green and inexpensive sorbent and a low volume of plasma without the need for further pretreatment steps are the main advantages of the method.  相似文献   
2.
We explore the influence of two solvents, namely water and the ionic liquid 1‐ethyl‐3‐methylimidazolium acetate (EmimAc), on the conformations of two cellulose models (cellobiose and a chain of 40 glucose units) and the solvent impact on glycosidic bond cleavage by acid hydrolysis by using molecular dynamics and metadynamics simulations. We investigate the rotation around the glycosidic bond and ring puckering, as well as the anomeric effect and hydrogen bonds, in order to gauge the effect on the hydrolysis mechanism. We find that EmimAc eases hydrolysis through stronger solvent–cellulose interactions, which break structural and electronic barriers to hydrolysis. Our results indicate that hydrolysis in cellulose chains should start from the ends and not in the centre of the chain, which is less accessible to solvent.  相似文献   
3.
The concentrations of water, W, and electrolytes present in solutions of LiCl in N,N-dimethylacetamide, LiCl/DMAc, and of tetrabutylammonium fluoride. x-hydrate in DMSO, TBAF.xW/DMSO can be accurately and expediently determined by three independent methods, UV–vis, FTIR and EMF measurement. The first relies on the use of solvatochromic probes whose spectra are sensitive to solution composition. It is applicable to W/LiCl/DMAc solutions but not to TBAF.xW/DMSO, because the charge-transfer complex bands of the probes are suppressed by strong interactions with the latter electrolyte. Integration of νOH band of water may be employed in order to determine [W], hence [electrolyte] by weight difference. EMF measurement uses ion-selective electrodes in order to determine [electrolyte], hence [W] by weight difference. Results of the latter method were in excellent agreement with those of FTIR. The reason for the failure of Karl Fischer titration is addressed, and the relevance of the results obtained to functionalization of cellulose under homogenous solution conditions is briefly commented on.  相似文献   
4.
For the modification of medically useful biomaterials from bacterially synthesized cellulose, fleeces of Acetobacter xylinum have been produced in the presence of 0.5, 1.0, and 2.0% (m/v) carboxymethylcellulose (CMC), methylcellulose (MC), and poly(vinyl alcohol) (PVA), respectively, in the Hestrin-Schramm culture medium. The incorporation of the water-soluble polymers into cellulose and their influence on the structure, crystal modifications, and material properties are described. With IR and solid-state 13C NMR spectroscopy of the fleeces, the presence of the cellulose ethers and an increase in the amorphous parts of the cellulose modifications (NMR results) have been detected. The incorporation is represented by a higher product yield, too. As demonstrated by scanning electron microscopy, a porelike cellulose network structure forms in the presence of CMC and MC. This modified structure increases the water retention ability (expressed as the water content), the ion absorption capacity, and the remaining nitrogen-containing residues from the culture medium or bacteria cells. The water content of bacterial cellulose (BC) in the never dried state and the freeze-dried, reswollen state can be controlled by the CMC concentration in the culture solution. The freeze-dried, reswollen BC-CMC (2.0%) contains 96% water after centrifugation, whereas standard BC has only 73%. About 98% water is included in a BC-MC composite in the wet state, and about 93% is included in the reswollen state synthesized in the presence of 0.5, 1.0, or 2.0% MC. These biomaterial composites can be stored in the dried state and reswollen before use, reaching a higher water absorption than pure, never dried BC. The copper ion capacity of BC-CMC composites increases proportionally with the added amount of CMC. BC-CMC (0.5%) can absorb 3 times more copper ions than original BC. In the case of 0.5 and 1.0% PVA additions to the culture solution, this polymer cannot be detected in the cellulose fleeces after they are washed. Nevertheless the presence of PVA in the culture medium effects a decreased product yield, a retention of nitrogen-containing residues in the material during purification, a reduced water absorption ability, and a slightly higher copper ion capacity in comparison with original BC. The water content of freeze-dried, reswollen BC-PVA (0.5%) is only 62%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 463–470, 2004  相似文献   
5.
Electrospinning of cellulose acetate (CA) in a new solvent system and the deacetylation of the resulting ultrafine CA fibers were investigated. Ultrafine CA fibers (∼2.3 μm) were successfully prepared via electrospinning of CA in a mixed solvent of acetone/water at water contents of 10–15 wt %, and more ultrafine CA fibers (0.46 μm) were produced under basic pH conditions. Ultrafine cellulose fibers were regenerated from the homogeneous deacetylation of ultrafine CA fibers in KOH/ethanol. It was very rapid and completed within 20 min. The crystal structure, thermal properties, and morphology of ultrafine CA fibers were changed according to the degree of deacetylation, finally to those of pure cellulose, but the nonwoven fibrous mat structure was maintained. The activation energy for the deacetylation of ultrafine CA fibers was 10.3 kcal/mol. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 5–11, 2004  相似文献   
6.
Cellulose was dissolved in 6 wt % NaOH/4 wt % urea aqueous solution, which was proven by a 13C NMR spectrum to be a direct solvent of cellulose rather than a derivative aqueous solution system. Dilute solution behavior of cellulose in a NaOH/urea aqueous solution system was examined by laser light scattering and viscometry. The Mark–Houwink equation for cellulose in 6 wt % NaOH/4 wt % urea aqueous solution at 25 °C was [η] = 2.45 × 10?2 weight‐average molecular weight (Mw)0.815 (mL g?1) in the Mw region from 3.2 × 104 to 12.9 × 104. The persistence length (q), molar mass per unit contour length (ML), and characteristic ratio (C) of cellulose in the dilute solution were 6.0 nm, 350 nm?1, and 20.9, respectively, which agreed with the Yamakawa–Fujii theory of the wormlike chain. The results indicated that the cellulose molecules exist as semiflexible chains in the aqueous solution and were more extended than in cadoxen. This work provided a novel, simple, and nonpollution solvent system that can be used to investigate the dilute solution properties and molecular weight of cellulose. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 347–353, 2004  相似文献   
7.
Summary A rapid, robust and reproducible method providing excellent separation performance and simplicity using a 0.5% MC-4000 methyl cellulosic sieving medium in DB-1 coated capillaries has been developed. The method is suitable for qualitative comparison of DNA restriction profiles for fragments in the size range 100–1000 base pairs (bp). Efficiencies up to 8.5 million plates/m (1057 bp fragment) were recorded. Peak resolution of 6 bp (291/297 bp, 335/341 bp) and 4 bp (238/242 bp, 341/345 bp) was achieved. In addition, 1 bp partial resolution of 123/124 bp and 298/297 bp was obtained. Run-to-run (n=15), day-to-day (n=4), and capillary-to-capillary (n=3) variations of 0.1–0.2% RSD, 0.3–0.5% RSD, and 0.1–0.3% RSD, respectively, were observed. The MC-4000 sieving matrix was found to be better than hydroxypropyl methyl cellulose and hydroxypropyl cellulose, in terms of both performance and stability in the DB-1 coated capillaries. The efficiency and resolution in DB-WAX capillaries were inferior to those obtained in DB-1 capillaries. The commercially available DB-1 capillaries were stable for months in the sieving medium at pH 8.3 and could be regenerated to provide high efficiency after accidental current breaks.  相似文献   
8.
The main transitions of cellulose fatty esters with different degrees of substitution (DSs) were investigated with dynamic mechanical thermal analysis. Two distinct main relaxations were observed in partially substituted cellulose esters (PSCEs). They were attributed to the glass‐transition temperature and to the chain local motion of the aliphatic substituents. The temperatures of both transitions decreased when DS or the number of carbon atoms (n) of the acyl substituent increased. Conversely, all the transitions of fully substituted cellulose esters occurred within a narrow temperature range, and they did not vary significantly with n. This phenomenon was explained by the formation of a crystalline phase of the fatty substituents. The presence of few residual OH groups in PSCEs was responsible for a large increase in the storage bending modulus, and it eliminated the effect of n on damping. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 281–288, 2003  相似文献   
9.
Phosphorus-containing cellulose cation exchangers were synthesized by reaction of wood cellulose with orthophosphoric acid and the ternary polymer from glycidylmethacrylate, styrene, and maleic anhydride. The effects of the ratio of reactants, temperature, and duration of the reaction on the phosphorylation and exchange capacity of the modified cellulose material were studied.  相似文献   
10.
Summary Hydroxypropyl methyl cellulose (HPMC) and polyethylene glycol 400 (PEG 400) content in HypoTears™ Daily Dose ophthalmic solution are determined simultaneously by size exclusion chromatography. The retention times of HPMC and PEG 400 are 10.6 and 15.4 minutes, respectively. The method requires minimal sample pretreatment and is accurate and reproducible. The peak area response from a refractive index detector versus HPMC and PEG 400 concentration is linear over the range of 50–150 % of their label claims of 2.5 mg/mL and 10 mg/mL, respectively. The mean absolute recoveries of HPMC and PEG 400 at their label claim using the described method are 98.9±1.3 % and 100.4±1.2 % (mean±SD, n=12), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号