首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   6篇
  国内免费   6篇
化学   87篇
晶体学   1篇
力学   1篇
数学   1篇
物理学   11篇
  2023年   6篇
  2022年   16篇
  2021年   15篇
  2020年   20篇
  2019年   8篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   3篇
  2013年   4篇
  2012年   5篇
  2011年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2001年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有101条查询结果,搜索用时 312 毫秒
1.
本文介绍了多路逆磁测量方法及利用这一方法在HER装置上测量热电子环沿轴向的长度与晃荡电子密度的轴向分布的实验结果。  相似文献   
2.
Detection of single molecules, particles, and rapid redox events is a challenge of electrochemical investigations and requires either an amplification strategy or significant averaging for the electrochemical current to exceed the noise level. We consider the minimum number of electrons required to reach the limit of quantification in these electrochemical measurements. A survey of the literature indicates that the state-of-the-art limit in current detection for different types of measurements (e.g. voltammetry, single-molecule redox cycling, ion channel recordings of single molecules, metal nanoparticle collision, and phase nucleation) is independent of the nature of the measurement and increases linearly with reciprocal response time, Δt?1, over ~5 orders of magnitude (from ~10 to ~106 s?1). We demonstrate that the practical limit of quantification requires cumulative measurement of ~2100 electrons during Δt and is determined by statistics of counting electrons, that is, the shot noise in the current.  相似文献   
3.
The superior properties of nanomaterials with a special structure can provide prospects for highly efficient water splitting and lithium storage. Herein, we fabricated a series of peapodlike C@Ni2?xCoxP (x≤1) nanocomposites by an anion‐exchange pathway. The experimental results indicated that the HER activity of C@Ni2?xCoxP catalyst is strongly related to the Co/Ni ratio, and the C@NiCoP got the highest HER activity with low onset potential of ~45 mV, small Tafel slope of ~43 mV dec?1, large exchange current density of 0.21 mA cm?2, and high long‐term durability (60 h) in 0.5 m H2SO4 solutions. Equally importantly, as an anode electrode for lithium batteries, this peapodlike C@NiCoP nanocomposite gives excellent charge–discharge properties (e.g., specific capacity of 670 mAh g?1 at 0.2 A g?1 after 350 cycles, and a reversible capacity of 405 mAh g?1 at a high current rate of 10 A g?1). The outstanding performance of C@NiCoP in HER and LIBs could be attributed to the synergistic effect of the rational design of peapodlike nanostructures and the introduction of Co element.  相似文献   
4.
This review discusses the latest advances in electrodeposition of nanostructured catalysts for electrochemical energy conversion: fuel cells, water splitting, and carbon dioxide electroreduction. The method excels at preparing efficient and durable nanostructured materials, such as nanoparticles, single atom clusters, hierarchical bifunctional combinations of hydroxides, selenides, phosphides, and so on. Yet, in most cases, chemical composition cannot be decoupled from catalyst morphology. This compromises the rational design of electrodeposition procedures because performance indicators depend on both morphology and surface chemistry. We expect electrodeposition will keep unraveling its potential as the preferred method for electrocatalyst synthesis once a deeper understanding of the electrochemical growth process is combined with complex chemistries to have control of the morphology and the surface composition of complex (bifunctional) electrocatalysts.  相似文献   
5.
The development of high-efficiency, low-cost, and earth-abundant electrocatalysts for overall water splitting remains a challenge. In this work, Ni-modified MoS2 hybrid catalysts are grown on carbon cloth (Ni-Mo-S@CC) through a one-step hydrothermal treatment. The optimized Ni-Mo-S@CC catalyst shows excellent hydrogen evolution reaction (HER) activity with a low overpotential of 168 mV at a current density of 10 mA cm−2 in 1.0 m KOH, which is lower than those of Ni-Mo-S@CC (1:1), Ni-Mo-S@CC (3:1), and pure MoS2. Significantly, the Ni-Mo-S@CC hybrid catalyst also displays outstanding oxygen evolution reaction (OER) activity with a low overpotential of 320 mV at a current density of 10 mA cm−2, and remarkable long-term stability for 30 h at a constant current density of 10 mA cm−2. Experimental results and theoretical analysis based on density functional theory demonstrate that the excellent electrocatalytic performance can be attributed mainly to the remarkable conductivity, abundant active sites, and synergistic effect of the Ni-doped MoS2. This work sheds light on a unique strategy for the design of high-performance and stable electrocatalysts for water-splitting electrolyzers.  相似文献   
6.
A pharmacophore model has been developed using diverse classes of epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors useful in the treatment of human tumours. Among the top 10 generated hypotheses, the second hypothesis, with one hydrogen bond acceptor, one ring aromatic and three hydrophobic features, was found to be the best on the basis of Cat Scramble validation as well as test set prediction (r training?=?0.89, r test?=?0.82). The model also maps well to the external test set molecules as well as clinically active molecules and corroborates the docking studies. Finally, 10 hits were identified as potential leads after virtual screening of ZINC database for EGFR TK inhibition. The study may facilitate the designing and discovery of novel EGFR TK inhibitors.  相似文献   
7.
The use of single-atom metals (SAM) as catalysts of energy conversion reactions is a recent topic, which has gained popularity in the last two decades. Transition metal dichalcogenides emerged as important electrocatalysts since it was discovered that their chalcogenide edge sites are active towards the electrocatalytic hydrogen evolution reaction (HER) and could also serve as supports for other metals within the same applications. Currently, several groups have reported a novel metal?chalcogenide arrangement, with the possibility of isolating metals at specific sites on chalcogenides to enhance their properties resulting in a synergistic effect in which both chalcogenide and single-atom metal features are exploited, either as promoters or active sites. Theoretical studies have been the basis of these reports.  相似文献   
8.
Herein, we demonstrate an easy way to improve the hydrogen evolution reaction (HER) activity of Pt electrodes in alkaline media by introducing Ni–Fe clusters. As a result, the overpotential needed to achieve a current density of 10 mA cm?2 in H2‐saturated 0.1 m KOH is reduced for the model single‐crystal electrodes down to about 70 mV. To our knowledge, these modified electrodes outperform any other reported electrocatalysts tested under similar conditions. Moreover, the influence of 1) Ni to Fe ratio, 2) cluster coverage, and 3) the nature of the alkali‐metal cations present in the electrolyte on the HER activity has been investigated. The observed catalytic performance likely originates from both the improved water dissociation at the Ni–Fe clusters and the subsequent optimal hydrogen adsorption and recombination at Pt atoms present at the Ni–Fe/Pt boundary.  相似文献   
9.
《Arabian Journal of Chemistry》2020,13(12):9179-9195
Multi-target EGFR, HER2, VEGFR-2 and PDGFR is an improved strategy for the treatment of solid tumors. This work deals with synthesis of an array of new 6-benzoyl benzimidazole derivatives utlizing1-(6-benzoyl-2-(3,4-dimethoxyphenyl)-1H benzo[d] imidazol-1-yl)propan-2-one (1) as a starting compound. The new compounds were screened as cytotoxic agents against cervical cancer cells (Hela) and Doxorubicin served as a reference drug. Most of the tested compounds showed promising anticancer activity in addition to their safety towards the normal cell line. The most potent candidates were evaluated as EGFR, HER2, PDGFR-β and VEGFR2 inhibitors in comparison to Erlotinib. Compounds 9 and 13 exhibited promising suppression effects. Also, the latter compounds exhibited their ability to induce cellular apoptosis alongside cell cycle arrest at the G2/M phase and accumulation of cells in pre-G1 phase. Molecular docking analysis suggested that compounds 2c, 3f, 9, 12 and 13 tightly interacts with the amino acid residues in the active binding site of HER2 kinase.  相似文献   
10.
The influence of oxides in the hydrogen evolution on Raney nickel electrocatalysts was characterized by electrochemical impedance measurements. In addition, these materials show competitive overpotentials for hydrogen evolution with a modified Watts bath as a binder for the Raney nickel. The optimum result was ?190?mV of overpotential at 100?mA?cm?2. Oxygen in the Raney Ni catalyst affects its electroactivity toward hydrogen evolution. The source of oxygen is related to the presence of chloride ions in the modified Watts bath. A Watts bath binds Raney Ni particles to the surface of the catalysts and chloride regulates the oxygen content in the nickel binder during electrodeposition. High oxygen content increases the hydrogen evolution overpotential of the electrode. The electroactivity of the synthesized porous coatings was evaluated by polarization curves and impedance plots. In addition, surface characterization by X-ray diffraction, field emission–scanning electron microscopy equipped with energy-dispersive analysis, and X-ray photoelectron spectroscopy is reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号