首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   8篇
化学   8篇
数学   1篇
物理学   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   4篇
  2006年   1篇
  1996年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
通过连续多步自组装的方式分别将三唑亚铁(SCO1)和氨基三唑亚铁(SCO2)自旋转换纳米材料生长于氧化铝模板(AAO)的孔道内和表面上。利用扫描电镜(SEM)、红外光谱(IR)、粉末X射线衍射(PXRD)、拉曼光谱(Raman)等手段对SCO1-1D+2D和SCO2-1D+2D纳米材料进行表征,SEM表明随着自组装时间的增加,球状的SCO纳米颗粒生长于AAO孔道内,并逐渐形成1D的纳米结构,而在AAO表面则形成致密均匀的SCO-2D薄膜。两种SCO-1D+2D纳米粒子都具有两步自旋行为(SCO1-1D+2D:Tc1↑=319 K,Tc1↓=313 K,Tc2↑=381 K,Tc2↓=340 K;SCO2-1D+2D:Tc1↑=181 K,Tc1↓=155 K,Tc2↑=246 K,Tc2↓=233 K)。对相应的SCO-1D和SCO-2D磁性结果表明,两步自旋转换行为的产生是由于SCO组装体形貌的差异。其中,低温区的自旋转换行为是由生长于AAO表面的SCO-2D自旋转换性能所致,而发生在更高温度的第二阶段的自旋转换行为则归因于生长于AAO孔道内的SCO-1D的自旋转换性能。  相似文献   
2.
通过高氯酸亚铁,4-(咪唑-2-甲醛)丁腈和光学纯苯乙胺衍生物的自组装成功合成了2个纯手性单核自旋转换铁(Ⅱ)化合物fac-Λ-[Fe(R-L1)3](ClO4)2(1),fac-Λ-[Fe(R-L2)3](ClO4)2(2).利用X-射线单晶衍射、元素分析(EA)、红外光谱(IR)、核磁共振氢谱(1H NMR)、紫外光谱(UV)、圆二光谱(CD)等手段对配合物结构进行了表征.X-射线单晶衍射表明在化合物12中,铁(Ⅱ)金属中心与3个不对称双齿手性席夫碱配体中的6个氮原子配位形成八面体配位环境.每个结构基元中包含1个[Fe(L)3]2+阳离子和2个高氯酸根阴离子.由于铁(Ⅱ)中心周围手性配体的螺旋协调配位使[Fe(L)3]2+形成单一手性Λ构型.Fe(Ⅱ)N键长表明配合物12中的铁(Ⅱ)在低自旋状态.在[Fe(L)3]2+中,相邻配体中的苯环和咪唑环形成分子内π-π相互作用.配合物12通过分子间C-H…π相互作用形成三维超分子结构.CD光谱证实配合物12在溶液中的光学活性.磁性测试表明配合物12分别在232和250 K发生自旋转换.由于配合物12具有相同的手性空间群和类似的堆积方式和分子间相互作用,导致12表现出不同自旋转换温度的原因主要是取代基效应.  相似文献   
3.
利用氧化石墨烯(GO)表面具有丰富含氧基团的特点,采用原位生长法将经典的亚铁三氮唑自旋转换(SCO)配位聚合物[Fe(Htrz)2(trz)](BF4)负载到二维材料GO的表面。利用X射线粉末衍射(PXRD)、红外光谱(FTIR)、SEM、TEM、拉曼等手段对自旋转换-氧化石墨烯(SCO-GO)纳米复合材料进行了表征。通过光谱表征发现,复合材料的FTIR和PXRD特征峰为GO和[Fe(Htrz)2(trz)](BF4)特征峰的叠加,初步证明了自旋转换-氧化石墨烯纳米复合材料已成功制备。SEM和TEM分析直观地显示立方体状的[Fe(Htrz)2(trz)](BF4)纳米颗粒均匀地分散在氧化石墨烯表面,且随着原位生长时间的增加,GO表面的[Fe(Htrz)2(trz)](BF4)的负载量增加、尺寸增大。拉曼图谱表明[Fe(Htrz)2(trz)](BF4)负载到GO表面后,氧化石墨烯特征拉曼峰的强度比(ID/IG)增大,说明氧化石墨烯的缺陷密集程度增大,[Fe(Htrz)2(trz)](BF4)纳米颗粒与石墨烯之间的作用力增强。磁性测试表明不同自组装时间(1、6、12 h)的SCO-GO复合材料的T1/2↑分别为381.1、381.5和382.4 K,T1/2↓分别为345.9、345.0和344.8 K,其磁滞回线宽度分别为35.2、36.5和37.6 K,这是由于不同自组装时间的SCO-GO复合材料中[Fe(Htrz)2(trz)](BF4)的负载量和尺寸的差异导致的。DSC分析结果和磁性结果一致,证实了SCO-GO复合材料自旋转变温度向高温区移动。  相似文献   
4.
(HI,亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平时的水平发挥出来,你就会有出色的表现·放松一点,相信自己的实力!)一、精心选一选,相信你一定能选对(每小题2分,共20分)1·下列计算中正确的是()·A·a2a3=a6B·a3 a=a4C·(a2)3=a5D·(-3a2)2=9a4  相似文献   
5.
 如何理解微观粒子的波粒二象性,如何将经典观念上对立、排斥的波和粒子两个概念统一于一体,是大学物理教学中的一个难点。电子衍射实验说明电子具有波动性,它是证明德布罗意波存在的重要实验之一,一般的教材都对此作了介绍,并给出了相应的照片。但是,同学们在学习过程中却感到很抽象,对其衍射条纹的形成过程以及电子的波动性和粒子性的统一很难理解。  相似文献   
6.
通过高氯酸亚铁,4-(咪唑-2-甲醛)丁腈和光学纯苯乙胺衍生物的自组装成功合成了2个纯手性单核自旋转换铁(Ⅱ)化合物fac-Λ-[Fe(R-L1)3](Cl O4)2(1),fac-Λ-[Fe(R-L2)3](Cl O4)2(2)。利用X-射线单晶衍射、元素分析(EA)、红外光谱(IR)、核磁共振氢谱(1H NMR)、紫外光谱(UV)、圆二光谱(CD)等手段对配合物结构进行了表征。X-射线单晶衍射表明在化合物1和2中,铁(Ⅱ)金属中心与3个不对称双齿手性席夫碱配体中的6个氮原子配位形成八面体配位环境。每个结构基元中包含1个[Fe(L)3]2+阳离子和2个高氯酸根阴离子。由于铁(Ⅱ)中心周围手性配体的螺旋协调配位使[Fe(L)3]2+形成单一手性Λ构型。Fe(Ⅱ)-N键长表明配合物1和2中的铁(Ⅱ)在低自旋状态。在[Fe(L)3]2+中,相邻配体中的苯环和咪唑环形成分子内π-π相互作用。配合物1和2通过分子间C-H…π相互作用形成三维超分子结构。CD光谱证实配合物1和2在溶液中的光学活性。磁性测试表明配合物1和2分别在232和250 K发生自旋转换。由于配合物1和2具有相同的手性空间群和类似的堆积方式和分子间相互作用,导致1和2表现出不同自旋转换温度的原因主要是取代基效应。  相似文献   
7.
通过连续多步自组装的方式分别将三唑亚铁(SCO1)和氨基三唑亚铁(SCO2)自旋转换纳米材料生长于氧化铝模板(AAO)的孔道内和表面上。利用扫描电镜(SEM)、红外光谱(IR)、粉末X射线衍射(PXRD)、拉曼光谱(Raman)等手段对SCO1-1D+2D和SCO2-1D+2D纳米材料进行表征,SEM表明随着自组装时间的增加,球状的SCO纳米颗粒生长于AAO孔道内,并逐渐形成1D的纳米结构,而在AAO表面则形成致密均匀的SCO-2D薄膜。两种SCO-1D+2D纳米粒子都具有两步自旋行为(SCO1-1D+2D:Tc1↑=319 K,Tc1↓=313 K,Tc2↑=381 K,Tc2↓=340 K;SCO2-1D+2D:Tc1↑=181 K,Tc1↓=155 K,Tc2↑=246 K,Tc2↓=233 K)。对相应的SCO-1D和SCO-2D磁性结果表明,两步自旋转换行为的产生是由于SCO组装体形貌的差异。其中,低温区的自旋转换行为是由生长于AAO表面的SCO-2D自旋转换性能所致,而发生在更高温度的第二阶段的自旋转换行为则归因于生长于AAO孔道内的SCO-1D的自旋转换性能。  相似文献   
8.
以含有苯环和咪唑环的手性双齿席夫碱为配体, 合成了2个纯手性单核自旋转换铁(Ⅱ)配合物fac-Δ-[Fe(S-L1)3][ClO4]2 (1), mer-Λ-[Fe(R-L2)3][ClO4]2·Et2O (2)(L1=1-对氯苯基-N-(1-正丙烯基-1H-咪唑-2-亚甲基)乙胺;L2=1-苯基-N-(1-异丙烯基-1H-咪唑-2-亚甲基)乙胺)。利用X-射线单晶衍射、元素分析(EA)、红外光谱(IR)、核磁共振氢谱(1H NMR)、紫外光谱(UV)、圆二光谱(CD)等手段对配合物结构进行了表征。X-射线单晶衍射表明在配合物12中, 铁(Ⅱ)金属中心与3个不对称双齿手性席夫碱配体中的6个氮原子配位形成八面体配位环境。配合物1中每个结构基元中包含1个[Fe(Ln)3]2+阳离子和2个高氯酸根阴离子。而配合物2中每个结构基元中包含2个[Fe(Ln)3]2+阳离子、4个高氯酸根阴离子和1个乙醚分子。由于铁(Ⅱ)中心周围手性配体的螺旋协调配位使[Fe(Ln)3]2+形成单一构型。Fe(Ⅱ)-N键长表明配合物1中的铁(Ⅱ)在低自旋状态, 而配合物2中的铁(Ⅱ)在高自旋状态。在[Fe(Ln)3]2+中, 相邻配体中的苯环和咪唑环形成分子内π-π相互作用。配合物12通过分子间C-H…π和C-Cl…π相互作用形成超分子结构。CD光谱证实配合物12在溶液中的光学活性。磁性测试表明配合物12分别在372 K和146 K发生自旋转换。由于配合物12具有不同的堆积方式和分子间相互作用, 导致1和2表现出不同的自旋转换温度。  相似文献   
9.
以含有苯环和咪唑环的手性双齿席夫碱为配体, 合成了2个纯手性单核自旋转换铁(Ⅱ)配合物fac-Δ -[Fe(S-L1)3][ClO4]2 (1), mer-Λ -[Fe(R-L2)3][ClO4]2· Et2O (2)(L1=1-对氯苯基-N-(1-正丙烯基-1H-咪唑-2-亚甲基)乙胺; L2=1-苯基-N-(1-异丙烯基-1H-咪唑-2-亚甲基)乙胺)。利用X-射线单晶衍射、元素分析(EA)、红外光谱(IR)、核磁共振氢谱(1H NMR)、紫外光谱(UV)、圆二光谱(CD)等手段对配合物结构进行了表征。X-射线单晶衍射表明在配合物12中, 铁(Ⅱ)金属中心与3个不对称双齿手性席夫碱配体中的6个氮原子配位形成八面体配位环境。配合物1中每个结构基元中包含1个[Fe(Ln)3]2+阳离子和2个高氯酸根阴离子。而配合物2中每个结构基元中包含2个[Fe(Ln)3]2+阳离子、4个高氯酸根阴离子和1个乙醚分子。由于铁(Ⅱ)中心周围手性配体的螺旋协调配位使[Fe(Ln)3]2+形成单一构型。Fe(Ⅱ)-N键长表明配合物1中的铁(Ⅱ)在低自旋状态, 而配合物2中的铁(Ⅱ)在高自旋状态。在[Fe(Ln)3]2+中, 相邻配体中的苯环和咪唑环形成分子内π-π相互作用。配合物12通过分子间C-H…π和C-Cl…π相互作用形成超分子结构。CD光谱证实配合物1和2在溶液中的光学活性。磁性测试表明配合物12分别在372 K和146 K发生自旋转换。由于配合物12具有不同的堆积方式和分子间相互作用, 导致12表现出不同的自旋转换温度。  相似文献   
10.
利用氧化石墨烯(GO)表面具有丰富含氧基团的特点,采用原位生长法将经典的亚铁三氮唑自旋转换(SCO)配位聚合物[Fe(Htrz)2(trz)](BF4)负载到二维材料GO的表面。利用X射线粉末衍射(PXRD)、红外光谱(FTIR)、SEM、TEM、拉曼等手段对自旋转换-氧化石墨烯(SCO-GO)纳米复合材料进行了表征。通过光谱表征发现,复合材料的FTIR和PXRD特征峰为GO和[Fe(Htrz)2(trz)](BF4)特征峰的叠加,初步证明了自旋转换-氧化石墨烯纳米复合材料已成功制备。SEM和TEM分析直观地显示立方体状的[Fe(Htrz)2(trz)](BF4)纳米颗粒均匀地分散在氧化石墨烯表面,且随着原位生长时间的增加,GO表面的[Fe(Htrz)2(trz)](BF4)的负载量增加、尺寸增大。拉曼图谱表明[Fe(Htrz)2(trz)](BF4)负载到GO表面后,氧化石墨烯特征拉曼峰的强度比(ID/IG)增大,说明氧化石墨烯的缺陷密集程度增大,[Fe(Htrz)2(trz)](BF4)纳米颗粒与石墨烯之间的作用力增强。磁性测试表明不同自组装时间(1、6、12 h)的SCO-GO复合材料的T1/2↑分别为381.1、381.5和382.4 K,T1/2↓分别为345.9、345.0和344.8 K,其磁滞回线宽度分别为35.2、36.5和37.6 K,这是由于不同自组装时间的SCO-GO复合材料中[Fe(Htrz)2(trz)](BF4)的负载量和尺寸的差异导致的。DSC分析结果和磁性结果一致,证实了SCO-GO复合材料自旋转变温度向高温区移动。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号