首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   811篇
  免费   133篇
  国内免费   132篇
化学   439篇
晶体学   15篇
力学   328篇
综合类   6篇
数学   116篇
物理学   172篇
  2023年   16篇
  2022年   33篇
  2021年   40篇
  2020年   70篇
  2019年   51篇
  2018年   38篇
  2017年   40篇
  2016年   60篇
  2015年   40篇
  2014年   37篇
  2013年   79篇
  2012年   55篇
  2011年   57篇
  2010年   35篇
  2009年   35篇
  2008年   32篇
  2007年   33篇
  2006年   39篇
  2005年   27篇
  2004年   25篇
  2003年   33篇
  2002年   32篇
  2001年   23篇
  2000年   17篇
  1999年   22篇
  1998年   19篇
  1997年   10篇
  1996年   10篇
  1995年   8篇
  1994年   6篇
  1993年   11篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   6篇
  1987年   1篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1971年   1篇
  1957年   4篇
  1936年   1篇
排序方式: 共有1076条查询结果,搜索用时 15 毫秒
1.
Flexible lithium/sulfur (Li/S) batteries are promising to meet the emerging power demand for flexible electronic devices. The key challenge for a flexible Li/S battery is to design a cathode with excellent electrochemical performance and mechanical flexibility. In this work, a flexible strap-like Li/S battery based on a S@carbon nanotube/Pt@carbon nanotube hybrid film cathode was designed. It delivers a specific capacity of 1145 mAh g−1 at the first cycle and retains a specific capacity of 822 mAh g−1 after 100 cycles. Moreover, the flexible Li/S battery retains stabile specific capacity and Coulombic efficiency even under severe bending conditions. As a demonstration of practical applications, an LED array is shown stably powered by the flexible Li/S battery under flattened and bent states. We also use the strap-like flexible Li/S battery as a real strap for a watch, which at the same time provides a reliable power supply to the watch.  相似文献   
2.
The low-cost, high specific surface area and porosity, controlled pore size, and chemical properties of metal–organic framework (MOF) materials have attracted much attention in the exploration of proton conduction. The method of chemically modifying MOF structures or introducing conductive medium into the holes can effectively improve the proton conductivities of the materials. Here, the structural tunability of ionic liquid (IL) and flexible MOF (fle-MOF) materials are matched to give full play to the conductivity of IL, the framework support, and the microporous effect of MOFs, which achieves the synergistic effect of performance and expands the temperature range of proton transfer. Three kinds of CS/IL@fle-MOF membranes were prepared by combining three fle-MOFs with 1-carboxymethyl-3-methylimidazole (CMMIM) in different proportions to obtain 15 pieces of membranes. The comparative analyses show that CS/IL@fle-MOF membranes have excellent proton conduction performance at a wider temperature range (263–353 K) and lower relative humidity (75% RH). Among them, the proton conductivities of CS/CMMIM@MIL-88A-25% and CS/CMMIM@MIL-88B-125% are up to 1.33 and 1.42 S cm−1 at 75% RH and 353 K, respectively; whereas those of CS/CMMIM@MIL-53(Fe)-75% and CS/CMMIM@MIL-88B-125% reach up to 2.1 × 10−3 and 1.28 × 10−3 S cm−1 at 75% RH and 263 K, respectively. The Ea of CS/CMMIM@fle-MOFs is in the range of 0.1–0.5 eV, suggesting that the proton transport follows predominantly the typical Grotthuss transfer mechanism. The results of this study indicate that the CS/CMMIM@fle-MOF membranes combinations offer great potential for the design of composite porous proton-conducting materials.  相似文献   
3.
Composites based on biocompatible thermoplastic elastomer styrene‐ethylene/butylene‐styrene (SEBS) as matrix and multi‐walled carbon nanotubes (MWCNT) as nanofillers show excellent mechanical and piezoresistive properties from low to large deformations. The MWCNT/SEBS composites have been prepared following a green solvent approach, to extend their range of applicability to biomedical applications. The obtained composites with 2, 4, and 5 wt % MWCNT content provide suitable piezoresistive response up to 80% deformation with a piezoresistive sensibility near 2.7, depending on the applied strain and MWCNT content. Composite sensors were also developed by spray and screen printing and integrated with an electronic data acquisition system with RF communication. The possibility to accurately control the composites properties and performance by varying MWCNT content, viscosity, and mechanical properties of the polymer matrix, shows the large potential of the system for the development of large deformation printable piezoresistive sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2092–2103  相似文献   
4.
李东  高彩云 《人工晶体学报》2020,49(12):2350-2357
以钨酸(H2WO4)为钨前驱体,十二烷胺(DDA)为模板剂,利用模板剂的结构导向功能,合成了比表面积为57.3 m2·g-1的介孔三氧化钨(DDA-WO3),是未用DDA制备的非介孔WO3(H2WO4-WO3)的2.35倍。X射线衍射(XRD)结果表明,400 ℃下煅烧的DDA-WO3是具有单斜晶型结晶孔壁的无序介孔结构。此外,400~550 ℃下煅烧的DDA-WO3的结晶度均高于同条件的H2WO4-WO3。400 ℃下的DDA-WO3/FTO(掺氟氧化锡)在1.0 V的Ag/AgCl偏压作用下,可以产生0.18 mA·cm-2的饱和光电流,是H2WO4-WO3/FTO(0.06 mA·cm-2)的3倍。增强的光电化学(PEC)活性主要因为DDA-WO3/FTO的大表面积降低了低结晶度对PEC性能的不利影响,成为影响PEC活性的主要因素。500 ℃煅烧导致了DDA-WO3/FTO介孔结构的坍塌,但高的结晶度仍然保持其优越的PEC催化活性。  相似文献   
5.
The structure formed by cobalt phthalocyanine (CoPc) and cobalt octaethylporphyrin (CoOEP) with electron-acceptor tetracyano-π-quinodimethane (TCNQ), was studied by Density Functional Theory (DFT) methods. According to theoretical calculations, both cobalt systems can establish dispersion forces related to TCNQ and also in both cases the link between them is built by means of hydrogen bonds. Based on the results of these DFT calculations, we developed experimental work: the organic semiconductors were doped, and the thermal evaporation technique was used to prepare semiconductor thin films of such compounds. The structure of the films was studied by FTIR and Raman spectroscopy. The optical properties of the CoPc-TCNQ and CoOEP-TCNQ films were investigated by means of UV-Vis measurements. The results obtained were used to estimate the type of transitions and the optical bandgap. The results were compared to the previously calculated theoretical bandgap. The CoOEP-TCNQ film presented the smallest theoretical and experimental bandgap. Finally, the electrical properties of the organic semiconductors were evaluated from a PET (polyethylene terephthalate)/indium tin oxide (ITO)/cobalt macrocycle-TCNQ/silver (Ag) device we prepared. The CoOEP-TCNQ-based device showed an ohmic behavior. The device manufactured from CoPc-TCNQ also showed an ohmic behavior at low voltages, but significantly changed to SCLC (space-charge limited conductivity) at high voltage values.  相似文献   
6.
采用模板辅助法制备了SnO2/TiO2复合空心球,样品直径为1.5~4.0μm,比表面积达到了92.9 m^2·g^-1,复合空心球表现出优越的光散射性能.以这种复合空心球作为染料敏化太阳能电池的光阳极,电池的光电转换效率可达到7.72%,高于SnO2微米球(2.70%)和TiO2微米球(6.26%).此外,以锐钛矿型TiO2纳米晶作为底层,SnO2/TiO2复合空心球作为光散射层制备的双层结构光阳极,电池光电转换效率进一步提升至8.43%.  相似文献   
7.
A photoinduced flexible Li-CO2 battery with well-designed, hierarchical porous, and free-standing In2S3@CNT/SS (ICS) as a bifunctional photoelectrode to accelerate both the CO2 reduction and evolution reactions (CDRR and CDER) is presented. The photoinduced Li-CO2 battery achieved a record-high discharge voltage of 3.14 V, surpassing the thermodynamic limit of 2.80 V, and an ultra-low charge voltage of 3.20 V, achieving a round trip efficiency of 98.1 %, which is the highest value ever reported (<80 %) so far. These excellent properties can be ascribed to the hierarchical porous and free-standing structure of ICS, as well as the key role of photogenerated electrons and holes during discharging and charging processes. A mechanism is proposed for pre-activating CO2 by reducing In3+ to In+ under light illumination. The mechanism of the bifunctional light-assisted process provides insight into photoinduced Li-CO2 batteries and contributes to resolving the major setbacks of the system.  相似文献   
8.
Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 μWh cm−2 with power density of 14.1 mW cm−2 (156.7 mW cm−3) at 1.4 V.  相似文献   
9.
This review summarizes the use of photoreactions that replace conventional heating processes for growing oxide thin films from chemical solutions. In particular, this review outlines key variables in photoreactions that affect epitaxial and polycrystalline thin film growth, including precursor materials, laser wavelength, laser fluence, and carbon. In addition, the features of the photoreaction process that can be controlled at a low temperature by oxygen non-stoichiometry are examined. Likewise, functions that are neither achieved by developing a gradient structure nor controlled by a thermal equilibrium reaction are detailed. Two new concepts are presented, known as photoreaction of nanoparticles (PRNP) and photoreaction of a hybrid solutions (PRHS), in which crystal nuclei are pre-dispersed in a metal–organic compound film. This method has successfully produced flexible phosphor films used as resistor or thermistor electronic components. Finally, thin film growth using different light sources such as flash lamps and femtosecond lasers (fs) is explored.  相似文献   
10.
Owing to their remarkable properties, single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) are expected to be used in various flexible electronics applications. To fabricate SWCNT channel layers for TFTs, solution-based film formation on a self-assembled monolayer (SAM) covered with amino groups is commonly used. However, this method uses highly oxidized surfaces, which is not suitable for flexible polymeric substrates. In this work, a solution-based SWCNT film fabrication using methoxycarbonyl polyallylamine (Moc-PAA) is reported. The NH2-terminated surface of the cross-linked Moc-PAA layer enables the formation of highly dense and uniform SWCNT networks on both rigid and flexible substrates. TFTs that use the fabricated SWCNT thin film exhibited excellent performance with small variations. The presented simple method to access SWCNT thin film accelerates the realization of flexible nanoelectronics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号