首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2278篇
  免费   259篇
  国内免费   235篇
化学   2086篇
晶体学   35篇
力学   18篇
综合类   13篇
数学   4篇
物理学   616篇
  2024年   2篇
  2023年   21篇
  2022年   37篇
  2021年   51篇
  2020年   94篇
  2019年   69篇
  2018年   57篇
  2017年   55篇
  2016年   99篇
  2015年   93篇
  2014年   114篇
  2013年   217篇
  2012年   128篇
  2011年   133篇
  2010年   99篇
  2009年   144篇
  2008年   143篇
  2007年   142篇
  2006年   177篇
  2005年   126篇
  2004年   123篇
  2003年   120篇
  2002年   82篇
  2001年   51篇
  2000年   64篇
  1999年   57篇
  1998年   46篇
  1997年   42篇
  1996年   39篇
  1995年   37篇
  1994年   16篇
  1993年   18篇
  1992年   23篇
  1991年   7篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1987年   9篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
排序方式: 共有2772条查询结果,搜索用时 15 毫秒
91.
In recent decades, high-temperature oxygen reduction reaction on mixed conducting cathodes were investigated intensively by many researchers. Computational approaches as well as electrochemical and spectroscopic studies have been made to elucidate the kinetics. Contribution of oxygen vacancy to the reaction rate was suggested in multiple reports, and plausible reaction pathways were proposed based on density functional theory (DFT) calculations. The picture of oxygen reduction reaction has become clearer in these years. However, there still is a discussion about a credible formula that represents the current–voltage relationships. Discrepancies are found among the reported data on the magnitude of the rate constant and on its dependencies on partial pressure and temperature. The difference is significant between a model electrode and a practical porous electrode. Comparison of the results suggests the existence of series reaction barriers, that is, the surface reaction and subsurface transport, which should be considered for consistent representation of the total electrode process.  相似文献   
92.
研究了1,4-烯炔衍生物与二芳基膦氧化物在银介导下发生的炔酰化反应.该反应利用自由基引发的1,2-炔基迁移策略合成了一系列γ-酮膦氧化物,产率适中.该反应机理可能涉及膦中心自由基与乙烯基的加成、3-exo-dig环化和1,2-炔基迁移等连续的过程,一步形成了C-P、C-C键等化学键,实现了非活性烯烃的双官能化.  相似文献   
93.
Carbon dioxide (CO2) conversion is promising in alleviating the excessive CO2 level and simultaneously producing valuables. This work reports the preparation of carbon nanorods encapsulated bismuth oxides for the efficient CO2 electroconversion toward formate production. This resultant catalyst exhibits a small onset potential of −0.28 V vs. RHE and partial current density of over 200 mA cm−2 with a stable and high Faradaic efficiency of 93 % for formate generation in a flow cell configuration. Electrochemical results demonstrate the synergistic effect in the Bi2O3@C promotes the rapid and selective CO2 reduction in which the Bi2O3 is beneficial for improving the reaction kinetics and formate selectivity, while the carbon matrix would be helpful for enhancing the activity and current density of formate production. This work provides effective bismuth-based MOF derivatives for efficient formate production and offers insights in promoting practical CO2 conversion technology.  相似文献   
94.
95.
Potassium substituted nanosized magnesium aluminates having a nominal composition Mg1−xKxAl2O4 where x=0.0, 0.25, 0.5, 0.75, 1.0 have been synthesized by the chemical co-precipitation method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), and dc electrical resistivity measurements. The XRD results reveal that the samples are spinel single phase cubic close packed crystalline materials. The calculated crystallite size ranges between 6 and 8 nm. The behaviour of the lattice constant seems to deviate from the Vegard's law. While X-ray density clearly increases, the bulk density and consequently, the percentage porosity do not exhibit a significant change on increasing the K+ content. The SEM micrographs suggest homogeneous distribution of the nanocrystallites in the samples. The dc electrical resistivity exhibits a typical semiconducting behaviour. Substitution of a Mg2+ ion by a K+ ion provides an extra hole to the system, which forms small polaron. Thermally activated hopping of these small polarons is believed to be the conduction mechanism in the Mg1−xKxAl2O4. The activation energy of hopping of small polarons has been calculated and found K+ ions content dependent.  相似文献   
96.
A spray‐pyrolysis process is introduced as an effective tool for the preparation of yolk–shell‐structured materials with electrochemical properties suitable for anode materials in Li‐ion batteries (LIBs). Yolk–shell‐structured ZnO–Mn3O4 systems with various molar ratios of the Zn and Mn components are prepared. The yolk–shell‐structured ZnO–Mn3O4 powders with a molar ratio of 1:1 of the Zn and Mn components are shown to have high capacities and good cycling performances.  相似文献   
97.
98.
A facile method for the large‐scale synthesis of SnO2 nanocrystal/graphene composites by using coarse metallic Sn particles and cheap graphite oxide (GO) as raw materials is demonstrated. This method uses simple ball milling to realize a mechanochemical reaction between Sn particles and GO. After the reaction, the initial coarse Sn particles with sizes of 3–30 μm are converted to SnO2 nanocrystals (approximately 4 nm) while GO is reduced to graphene. Composite with different grinding times (1 h 20 min, 2 h 20 min or 8 h 20 min, abbreviated to 1, 2 or 8 h below) and raw material ratios (Sn:GO, 1:2, 1:1, 2:1, w/w) are investigated by X‐ray diffraction, X‐ray photoelectron spectroscopy, field‐emission scanning electron microscopy and transmission electron microscopy. The as‐prepared SnO2/graphene composite with a grinding time of 8 h and raw material ratio of 1:1 forms micrometer‐sized architected chips composed of composite sheets, and demonstrates a high tap density of 1.53 g cm?3. By using such composites as anode material for LIBs, a high specific capacity of 891 mA h g?1 is achieved even after 50 cycles at 100 mA g?1.  相似文献   
99.
A cheap, mild and environmentally friendly oxidation of tertiary amines and azines to the corresponding Noxides is reported by using polyfluoroalkyl ketones as efficient organocatalysts. 2,2,2‐Trifluoroacetophenone was identified as the optimum catalyst for the oxidation of aliphatic tertiary amines and azines. This oxidation is chemoselective and proceeds in high‐to‐quantitative yields utilizing 10 mol % of the catalyst and H2O2 as the oxidant.  相似文献   
100.
Development of a new method to synthesize nanoporous metal oxides with highly crystallized frameworks is of great interest because of their wide use in practical applications. Here we demonstrate a thermal decomposition of metal‐cyanide hybrid coordination polymers (CPs) to prepare nanoporous metal oxides. During the thermal treatment, the organic units (carbon and nitrogen) are completely removed, and only metal contents are retained to prepare nanoporous metal oxides. The original nanocube shapes are well‐retained even after the thermal treatment. When both Fe and Co atoms are contained in the precursors, nanoporous Fe?Co oxide with a highly oriented crystalline framework is obtained. On the other hand, when nanoporous Co oxide and Fe oxide are obtained from Co‐ and Fe‐contacting precursors, their frameworks are amorphous and/or poorly crystallized. Single‐crystal‐like nanoporous Fe?Co oxide shows a stable magnetic property at room temperature compared to poly‐crystalline metal oxides. We further extend this concept to prepare nanoporous metal oxides with hollow interiors. Core‐shell heterostructures consisting of different metal‐cyanide hybrid CPs are prepared first. Then the cores are dissolved by chemical etching using a hydrochloric acid solution (i.e., the cores are used as sacrificial templates), leading to the formation of hollow interiors in the nanocubes. These hollow nanocubes are also successfully converted to nanoporous metal oxides with hollow interiors by thermal treatment. The present approach is entirely different from the surfactant‐templating approaches that traditionally have been utilized for the preparation of mesoporous metal oxides. We believe the present work proves a new way to synthesize nanoporous metal oxides with controlled crystalline frameworks and architectures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号