首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5547篇
  免费   484篇
  国内免费   645篇
化学   5184篇
晶体学   44篇
力学   8篇
综合类   16篇
数学   8篇
物理学   1416篇
  2024年   31篇
  2023年   187篇
  2022年   191篇
  2021年   258篇
  2020年   368篇
  2019年   318篇
  2018年   285篇
  2017年   269篇
  2016年   262篇
  2015年   208篇
  2014年   299篇
  2013年   397篇
  2012年   388篇
  2011年   477篇
  2010年   335篇
  2009年   444篇
  2008年   409篇
  2007年   402篇
  2006年   285篇
  2005年   257篇
  2004年   184篇
  2003年   129篇
  2002年   118篇
  2001年   63篇
  2000年   61篇
  1999年   20篇
  1998年   14篇
  1997年   6篇
  1996年   6篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有6676条查询结果,搜索用时 78 毫秒
91.
《Comptes Rendus Chimie》2017,20(2):190-196
Nanotube properties are strongly dependent on their structures. In this study, gallium nitride nanotubes (GaNNTs) are analyzed in armchair and zigzag conformations. The wurtzite GaN (0001) surface is used to model the nanotubes. Geometry optimization is performed at the PM7 semiempirical level, and subsequent single-point energy calculations are carried out via Hartree–Fock and B3LYP methods, using the 6-311G basis set. Semiempirical and ab initio methods are used to obtain strain energy, charge distribution, dipole moment, |HOMO-LUMO| gap energy, density of states and orbital contribution. The gap energy of the armchair structure is 3.82 eV, whereas that of the zigzag structure is 3.92 eV, in agreement with experimental data.  相似文献   
92.
The thermolysis of Cp′′′Ta(CO)4 with white phosphorus (P4) gives access to [{Cp′′′Ta}2(μ,η2 : 2 : 2 : 2 : 1 : 1-P8)] ( A ), representing the first complex containing a cyclooctatetraene-like (COT) cyclo-P8 ligand. While ring sizes of n >6 have remained elusive for cyclo-Pn structural motifs, the choice of the transition metal, co-ligand and reaction conditions allowed the isolation of A . Reactivity investigations reveal its versatile coordination behaviour as well as its redox properties. Oxidation leads to dimerization to afford [{Cp′′′Ta}442 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1-P16)][TEF]2 ( 4 , TEF=[Al(OC{CF3}3)4]). Reduction, however, leads to the fission of one P−P bond in A followed by rapid dimerization to form [K@[2.2.2]cryptand]2[{Cp′′′Ta}442 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1-P16)] ( 5 ), which features an unprecedented chain-type P16 ligand. Lastly, A serves as a P2 synthon, via ring contraction to the triple-decker complex [{Cp′′′Ta}2(μ,η6 : 6-P6)] ( B ).  相似文献   
93.
An enantioselective rhodium(I)-catalyzed Pauson–Khand reaction (PKR) using 1,6-chloroenynes that contain challenging 1,1-disubstituted olefins is described. In contrast to the previous studies with these types of substrates, which are only suitable for a single type of tether and alkyne substituent, the new approach results in a more expansive substrate scope, including carbon and heteroatom tethers with polar and non-polar substituents on the alkene. DFT calculations provide critical insight into the role of the halide, which pre-polarizes the alkyne to lower the barrier for metallacycle formation and provides the proper steric profile to promote a favorable enantiodetermining interaction between substrate and chiral diphosphine ligand. Hence, the chloroalkyne enables the efficient and enantioselective PKR with 1,6-enynes that contain challenging 1,1-disubstituted olefins, thereby representing a new paradigm for enantioselective reactions involving 1,6-enynes.  相似文献   
94.
New heterocyclic diradicaloids based on boron and nitrogen-doped polycyclic systems with open-shell ground-states are obtained via concomitant structural and quinoidal extensions, thus allowing to merge the best of both design strategies. A combination of experimental characterization and theoretical calculations have helped disclose their electronic structure, as well as rationalize their associated magnetic and photophysical properties, spanning the chemical space of available molecular templates for cutting-edge applications in organic electronics and spintronics.  相似文献   
95.
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.  相似文献   
96.
Multifunctional organoboron compounds increasingly enable the simple generation of complex, Csp3-rich small molecules. The ability of boron-containing functional groups to modify the reactivity of α-radicals has also enabled a myriad of chemical reactions. Boronic esters with vacant p-orbitals have a significant stabilizing effect on α-radicals due to delocalization of spin density into the empty orbital. The effect of coordinatively saturated derivatives, such as N-methyliminodiacetic acid (MIDA) boronates and counterparts, remains less clear. Herein, we demonstrate that coordinatively saturated MIDA and TIDA boronates stabilize secondary alkyl α-radicals via σB-N hyperconjugation in a manner that allows site-selective C−H bromination. DFT calculated radical stabilization energies and spin density maps as well as LED NMR kinetic analysis of photochemical bromination rates of different boronic esters further these findings. This work clarifies that the α-radical stabilizing effect of boronic esters does not only proceed via delocalization of radical character into vacant boron p-orbitals, but that hyperconjugation of tetrahedral boron-containing functional groups and their ligand electron delocalizing ability also play a critical role. These findings establish boron ligands as a useful dial for tuning reactivity at the α-carbon.  相似文献   
97.
A series of mesoionic, 1,2,3-triazole-derived N-heterocyclic olefins (mNHOs), which have an extraordinarily electron-rich exocyclic CC-double bond, was synthesized and spectroscopically characterized, in selected cases by X-ray crystallography. The kinetics of their reactions with arylidene malonates, ArCH=C(CO2Et)2, which gave zwitterionic adducts, were investigated photometrically in THF at 20 °C. The resulting second-order rate constants k2(20 °C) correlate linearly with the reported electrophilicity parameters E of the arylidene malonates (reference electrophiles), thus providing the nucleophile-specific N and sN parameters of the mNHOs according to the correlation lg k2(20 °C)=sN(N+E). With 21<N<32, the mNHOs are much stronger nucleophiles than conventional NHOs. Some mNHOs even excel the reactivity of mono- and diacceptor-substituted carbanions. It is exemplarily shown that the reactivity parameters thus obtained allow to calculate the rate constants for mNHO reactions with further Michael acceptors and predict the scope of reactions with other electrophilic reaction partners including carbon dioxide, which gives zwitterionic mNHO-carboxylates. The nucleophilicity parameters N correlate linearly with a linear combination of the quantum-chemically calculated methyl cation affinities and buried volumes of mNHOs, which offers a valuable tool to tailor the reactivities of strong carbon nucleophiles.  相似文献   
98.
Scholl oxidation has become an essential reaction in the bottom-up synthesis of molecular nanographenes. Herein, we describe a Scholl reaction controlled by the electronic effects on the starting substrate ( 1 a , b ). Anthracene-based polyphenylenes lead to spironanographenes under Scholl conditions. In contrast, an electron-deficient anthracene substrate affords a helically arranged molecular nanographene formed by two orthogonal dibenzo[fg,ij]phenanthro-[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties linked through an octafluoroanthracene core. Density Functional Theory (DFT) calculations predict that electronic effects control either the first formation of spirocycles and subsequent Scholl reaction to form spironanographene 2 , or the expected dehydrogenation reaction leading solely to the helical nanographene 3 . The crystal structures of four of the new spiro compounds (syn 2 , syn 9 , anti 9 and syn 10 ) were solved by single crystal X-ray diffraction. The photophysical properties of the new molecular nanographene 3 reveal a remarkable dual fluorescent emission.  相似文献   
99.
Electrochemical conversion of CO2 to highly valuable ethanol has been considered a intriguring strategy for carbon neutruality. However, the slow kinetics of coupling carbon-carbon (C−C) bonds, especially the low selectivity ethanol than ethylene in neutral conditions, is a significant challenge. Herein, the asymmetrical refinement structure with enhanced charge polarization is built in the vertically oriented bimetallic organic frameworks (NiCu-MOF) nanorod array with encapsulated Cu2O (Cu2O@MOF/CF), which can induce an intensive internal electric field to increase the C−C coupling for producing ethanol in neutral electrolyte. Particularly, when directly employed Cu2O@MOF/CF as the self-supporting electrode, the ethanol faradaic efficiency (FEethanol) could reach maximum 44.3 % with an energy efficiency of 27 % at a low working-potential of −0.615 V versus the reversible hydrogen electrode (vs. RHE) using CO2-saturated 0.5 M KHCO3 as the electrolyte. Experimental and theoretical studies suggest that the polarization of atomically localized electric fields derived from the asymmetric electron distribution can tune the moderate adsorption of *CO to assist the C−C coupling and reduce the formation energy of H2CCHO*-to-*OCHCH3 for the generation of ethanol. Our research offers a reference for the design of highly active and selective electrocatalysts for reducing CO2 to multicarbon chemicals.  相似文献   
100.
The fixing of N2 to NH3 is challenging due to the inertness of the N≡N bond. Commercially, ammonia production depends on the energy-consuming Haber-Bosch (H−B) process, which emits CO2 while using fossil fuels as the sources of hydrogen and energy. An alternative method for NH3 production is the electrochemical nitrogen reduction reaction (NRR) process as it is powered by renewable energy sources. Here, we report a tiara-like nickel-thiolate cluster, [Ni6(PET)12] (where, PET=2-phenylethanethiol)] as an efficient electro-catalyst for the electrochemical NRR at ambient conditions. Ammonia (NH3: 16.2±0.8 μg h−1 cm−2) was the only nitrogenous product over the potential of −2.3 V vs. Fc+/Fc with a Faradaic efficiency of 25%±1.7. Based on theoretical calculations, NRR by [Ni6(PET)12] proceeds through both the distal and alternating pathways with an onset potential of −1.84 V vs. RHE (i.e., −2.46 V vs. Fc+/Fc) which corroborates with the experimental findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号