首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   14篇
  国内免费   17篇
化学   98篇
晶体学   3篇
力学   17篇
物理学   52篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   12篇
  2019年   9篇
  2018年   7篇
  2017年   11篇
  2016年   10篇
  2015年   9篇
  2014年   11篇
  2013年   13篇
  2012年   9篇
  2011年   14篇
  2010年   10篇
  2009年   12篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   8篇
  2004年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
排序方式: 共有170条查询结果,搜索用时 23 毫秒
91.
Carbon nanotube (CNT) threads are a type of CNT arrays that consist of super long CNTs. CNT threads inherit the advantages of CNTs, while avoiding the potential toxicity caused by individual CNTs. Electrodes based on CNT threads were fabricated and used for simultaneous detection of trace levels of Cu2+, Pb2+ Cd2+ and Zn2+ by anodic stripping voltammetry (ASV). The detection limits are 0.27 nM, 1.5 nM, 1.9 nM and 1.4 nM for Cu2+, Pb2+, Cd2+ and Zn2+, respectively, in 0.1 M acetate buffer pH 4.5. The CNT thread electrode gives well‐defined, reproducible and sharp stripping signals for individual and simultaneous detection of heavy metals.  相似文献   
92.
In this study, we investigate Li adsorption mechanisms on the C60-SWCNT hybrid system using density functional theory. It is found that the Li adsorption energy of the C60-SWCNT hybrid system is increased in comparison to that of the pure SWCNT. The Li adsorption energy ranges from −1.917 eV to −2.642 eV for the single-Li adsorbed system and from −2.351 eV to −2.636 eV for the double-Li adsorbed system. It is also found that the adsorption energy becomes similar at most positions throughout the structure. In addition, the Li adsorption energy of 31-Li system is calculated to be −1.863 eV, which is significantly lower than the Li–Li binding energy (−1.030 eV). These results infer that Li atoms will be adsorbed on the space 1) between C60 and C60; 2) between SWCNT and C60; 3) the rest of the space (e.g. between SWCNTs), rather than form Li clusters. As more Li atoms are adsorbed onto the C60-SWCNT hybrid system due to such improved Li adsorption capability, the metallic character of the system is enhanced, which is confirmed via the band structure and electronic density of states.  相似文献   
93.
In this paper, the effects of carbon nanotubes (CNT) implantation and sisal fibre size on the electrical properties of sisal fibre-reinforced epoxy composites are reported. For this purpose, the epoxy composites reinforced with CNT-implanted sisal fibre of 5 mm and 10 mm lengths were prepared by hand moulding and samples characterized for their electrical properties, such as dielectric constant (ε′), dielectric dissipation factor (tan δ) and AC conductivity (σac) at different temperatures and frequencies. It was observed that the dielectric constant increases with increase in temperature and decreases with increase in frequency from 500 Hz to 5 KHz. Interestingly, the sample having CNT-implanted sisal fibre of 5 mm length exhibited the highest value of dielectric constant than the one with length 10 mm. This is attributed to the increased surface area of sisal fibre and enhancement of the interfacial polarization. At a constant volume and a length of 5 mm of the fibres, the number of interfaces per unit volume element is high and results in a higher interfacial polarization. The interfaces decrease as the fibre length increases, and therefore, the value of ε′ decreases at 10 mm fibre length. The peak value of the dielectric constant decreases with increasing frequency. A continuous decrease in dissipation factor (tan δ) with increasing frequency for all samples was observed, while at lower temperatures, the values of tan δ remains approximately same. The AC conductivity for 5 mm length sisal epoxy composite and 10 mm length sisal fibre–epoxy composites is higher than that of pure epoxy at all the frequencies.  相似文献   
94.
Catalytic chemical vapor deposition (CCVD) is one of the most promising synthesis methods for economically producing large quantities of different nanocarbon structures. Here we report a systematic study of the synthesis conditions for the preparation of different nanocarbon morphological structures via acetylene decomposition over the surface of quaternary-metallic catalyst (Fe-Ni-Co-Mo) supported on MgO (Fe-Ni-Co-Mo/MgO). In particular, the effect of temperature, and the reaction time were investigated to optimize the yield, quality, size and graphitic crystallinity of the deposited carbon. The study showed a successful synthesis of: (i) a high-yield and quality bamboo-like multiwalled carbon nanotubes (b-CNT), (ii) hybrid graphene/carbon nanotubes (G/CNT), and (iii) multilayer graphene (MLG). The structures of the obtained products were characterized by HR-TEM, TGA, Raman spectroscopy, FTIR and X-ray diffraction. The results found seem essential for realizing the role of different synthesis parameters on the yield, quality, and morphology of the synthesized product.  相似文献   
95.
Calcium carbonate is a model system to investigate the mechanism of solid formation by precipitation from solutions, and it is often considered in the debated classical and nonclassical nucleation mechanism. Despite the great scientific relevance of calcium carbonate in different scientific areas, little is known about the early stage of its formation. Therefore, contactless devices are designed that are capable of providing informative investigations on the early stages of the precipitation pathway of calcium carbonate in supersaturated solutions using classical scattering methods such as wide‐angle X‐ray scattering (WAXS) and small‐angle X‐ray scattering (SAXS) techniques. In particular, SAXS is exploited for investigating the size of entities formed from supersaturated solutions before the critical conditions for amorphous calcium carbonate (ACC) nucleation are attained. The saturation level is controlled and kept constant by mixing four diluted solutions (i.e., NaOH, CaCl2, NaHCO3, H2O) at constant T and pH. The scattering data are collected on a liquid jet generated about 75 s after the mixing point. The data are modeled using parametric statistical models providing insight about the size distribution of denser matter in the liquid jet. Theoretical implications on the early stage of solid formation pathway are inferred.  相似文献   
96.
碳纳米管(CNT)对于气体有超强的敏感性,可用于制备基于CNT的有害气体传感器.本文采用基于密度泛函理论的第一性原理研究Au掺杂CNT对NO和O_2的吸附特性.对吸附能、最终吸附距离、电荷转移量、态密度等的分析显示,Au掺杂使得CNT与NO间的交互作用明显增强,其中N原子端靠近CNT交互作用更强.禁带宽度和电荷密度分析表明,相比于NO分子中O原子端或者O2吸附,NO分子中N原子端与CNT发生交互作用会使体系导电性变化更为明显.说明Au掺杂能够很好地屏蔽空气中O_2对CNT导电性的影响,Au掺杂CNT作为NO气敏材料是可行的.  相似文献   
97.
Microbuckling of a doublewalled carbon nanotube (DWCNT) in an elastic (polymer) matrix is studied. The investigations are made within the scope of the piecewise homogeneous body model by utilizing the three-dimensional linearized theory of stability of deformable bodies. Flexural and axisymmetric microbuckling modes are considered. The DWCNT is modeled as concentrically-nested two circular hollow cylinders between which there is free space. It is assumed that on the inner surface of the outer tube (cylinder) and on the outer surface of the inner tube (cylinder) of the DWCNT full slipping conditions occur. At the same time, it is assumed that the difference between the radial displacements of the adjacent surfaces of the tubes resists with the van der Waals forces. On the interface between the matrix and DWCNT complete contact conditions are satisfied. Numerical results on the influence of the problem parameters on the critical deformation are presented and discussed. Also, numerical results related to the cases where the interlayer space is ignored and where full contact between the tubes is assumed are presented and compared with the mentioned results. In particular, it is established that full slipping between the tubes causes the values of the critical deformation to decrease significantly with respect to those obtained in the case where complete contact conditions occur between the tubes. Moreover, it is established that an increase in the values of the van der Waals forces also causes a decrease in the values of the critical compressing strain and the magnitude of this decrease depends on the thicknesses of the tubes of the DWCNT.  相似文献   
98.
碳纳米管作为一种拉曼力学传感介质具有优异的力学性质及共振、偏振拉曼特性。将碳纳米管散布在基体材料中,即可实现局部应力/应变的测量。受到光学衍射极限的限制,常规的远场拉曼光谱得到的是一定区域内众多碳管的平均散射信息。本文综合考虑了采样点内各方向碳管的影响,并对碳管散射的共振状态、碳管的分布状态、拉曼系统的偏振构型及偏振方向等实验因素对碳纳米管应变传感器性能的影响进行了深入分析,采用分峰和重构的方法定量地给出了不同实验模式下采样点内的拉曼信息组成以及各种实验模式的测量精度。分析和对比表明,采用双偏振构型且偏振方向沿荷载施加方向时的测量精度最高,即最优的实验模式。  相似文献   
99.
Graphene and carbon nanotubes/fibers (CNT/CNF) hybrid structures are emerging as frontier materials for high-efficiency electronics, energy storage, thermoelectric, and sensing applications owing to the utilization of extraordinary electrical and physical properties of both nanocarbon materials. Recent advances show a successful improvement in the structure and surface area of layered graphene by incorporating another dimension and structural form—three-dimensional graphene (3DG). In this study, vertically aligned CNFs were grown using plasma enhanced chemical vapor deposition on a relatively new form of compressed 3DG. The latter was synthesized using a conventional thermal chemical vapor deposition. The resulting free-standing hybrid material is in-situ N doped during synthesis by ammonia plasma and is produced in the form of a hybrid paper. Characterization of this material was done using electrochemical and spectroscopic measurements. The N doped hybrid showed relatively higher surface area and improved areal current density in electrochemical measurements than compressed pristine 3DG, which makes it a potential candidate for use as an electrode material for supercapacitors, sensors, and electrochemical batteries.  相似文献   
100.
在1 500 ℃的真空条件下,通过液相渗硅法(liquid silicon infiltration, LSI)制备了碳化硼/二硼化钛-碳纳米管(B4C-TiB2-CNT)陶瓷复合材料,对其成分、形貌、性能和增韧机理进行了分析表征和研究。结果表明:复合材料的主要组成相为B12(C, Si, B)3、SiC和Si。二硼化钛和碳纳米管显著提高了液相渗硅烧结碳化硼陶瓷的力学性能,在TiB2CNT的添加量分别为10%和0.4%时,复合陶瓷的弯曲强度和断裂韧性达到了(390±18) MPa和(5.38±0.38) MPa·m1/2,分别比B4C陶瓷高了31%和53%。本文的研究从片状SiC颗粒和CNT的拔出、TiB2的颗粒增韧以及裂纹的偏转等方面解释了B4C-TiB2-CNT复合材料的增韧机理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号