首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3541篇
  免费   136篇
  国内免费   19篇
化学   2689篇
晶体学   9篇
力学   65篇
数学   510篇
物理学   423篇
  2023年   17篇
  2021年   35篇
  2020年   40篇
  2019年   50篇
  2018年   31篇
  2017年   21篇
  2016年   79篇
  2015年   102篇
  2014年   75篇
  2013年   135篇
  2012年   182篇
  2011年   221篇
  2010年   158篇
  2009年   109篇
  2008年   215篇
  2007年   198篇
  2006年   199篇
  2005年   196篇
  2004年   133篇
  2003年   108篇
  2002年   115篇
  2001年   59篇
  2000年   69篇
  1999年   64篇
  1998年   57篇
  1997年   56篇
  1996年   48篇
  1995年   51篇
  1994年   46篇
  1993年   58篇
  1992年   54篇
  1991年   23篇
  1990年   31篇
  1989年   25篇
  1988年   30篇
  1987年   37篇
  1986年   33篇
  1985年   55篇
  1984年   23篇
  1983年   29篇
  1982年   42篇
  1980年   37篇
  1978年   27篇
  1977年   36篇
  1976年   17篇
  1974年   18篇
  1973年   19篇
  1972年   19篇
  1971年   17篇
  1969年   18篇
排序方式: 共有3696条查询结果,搜索用时 62 毫秒
91.
Reductive dehalogenation of dichloride with magnesium affords the new stable diazacyclooctatetraene (1,5-diazocine) . There is strong evidence for the intermediate formation of a 2, 6-diaza-4,8 - dicyanosemibullvalene .  相似文献   
92.
Structural prerequisites for the stability of the 31 helix of β-peptides can be defined from inspection of models (Figs. 1 and 2): lateral non-H-substituents in 2- and 3-position on the 3-amino-acid residues of the helix are allowed, axial ones are forbidden. To be able to test this prediction, we synthesized a series of heptapeptide derivatives Boc-(β-HVal-β-HAla-β-HLeu-Xaa-β-HVal-β-HAla-β-HLeu)-OMe 13–22 (Xaa = α- or β-amino-acid residue) and a β-depsipeptide 25 with a central (S)-3-hydroxybutanoic-acid residue (Xaa = –OCH(Me)CH2C(O)–) (Schemes 1 3). Detailed NMR analysis (DQF-COSY, HSQC, HMBC, ROESY, and TOCSY experiments) in methanol solution of the β-hexapeptide H(-β-HVal-β-HAla-β-HLeu)2-OH ( 1 ) and of the β-heptapeptide H-β-HVal-β-HAla-β-HLeu-(S,S)-β-HAla(αMe)-β-HVal-β-HAla- β-HLeu-OH ( 22 ), with a central (2S,3S)-3-amino-2-methylbutanoic-acid residue, confirm the helical structure of such β-peptides (previously discovered in pyridine solution) (Fig.3 and Tables 1–5). The CD spectra of helical β-peptides, the residues of which were prepared by (retentive) Arndt-Eistert homologation of the (S)- or L -α-amino acids, show a trough at 215 nm. Thus, this characteristic pattern of the CD spectra was taken as an indicator for the presence of a helix in methanol solutions of compounds 13–22 and 25 (including partially and fully deprotected forms) (Figs.4–6). The results fully confirm predicted structural effects: incorporation of a single ‘wrong’ residue ((R)-β-HAla, β-HAib, (R,S)-β-HAla(α Me), or N-Me-β-HAla) in the central position of the β-heptapeptide derivatives A (see 17, 18, 20 , or 21 , resp.) causes the CD minimum to disappear. Also, the β-heptadepsipetide 25 (missing H-bond) and the β-heptapeptide analogs with a single α-amino-acid moiety in the middle ( 13 and 14 ) are not helical, according to this analysis. An interesting case is the heptapeptide 15 with the central achiral, unsubstituted 3-aminopropanoic-acid moiety: helical conformation appears to depend upon the presence or absence of terminal protection and upon the solvent (MeOH vs. MeOH/H2O).  相似文献   
93.
Reaction of the hydroaromatic compounds (1a) and (3a) with lithium-diisopropylamide followed by phenylselenenyl chloride gives the selenides (1b) and (1c) resp. (3b), which form exclusively the phenols (4) resp. (6) after oxidation with 3-chloroperbenzoic acid in the presence of 3,5-dimethoxyaniline (7a).  相似文献   
94.
1,3-Dimethyluracil (1,3-DimeU) reacts with trans-[(CH(3)NH(2))(2)Pt(H(2)O)(2)](+) to give trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(H(2)O)]X (X = NO(3)(-), 1a, ClO(4)(-), 1b) and subsequently with NaCl to give trans-(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)Cl (2) or with NH(3) to yield trans-[(CH(3)NH(2))(2)Pt(1,3-DimeU-C5)(NH(3))]ClO(4) (3). In a similar way, (dien)Pt(II) forms [dienPt(1,3-DimeU-C5)](+) (4). Reactions leading to formation of 1 and 4 are slow, taking days. In contrast, Hg(CH(3)COO)(2) reacts fast with 1,3-DimeU to give (1,3-DimeU-C5)Hg(CH(3)COO) (5). Both 1-methyluracil (1-MeUH) and uridine (urdH) react with (dien)Pt(II) initially at N(3) and subsequently with either (dien)Pt(II) or Hg(CH(3)COO)(2) also at C(5) to give the diplatinated species 7 and 9 or the mixed PtHg complex 8. C(5) binding of either Pt(II) or Hg(II) is evident from coupling of uracil-H(6) with either (195)Pt or (199)Hg nuclei and (3)J values of 47-74 Hz (for Pt compounds) and 185-197 Hz (for Hg compounds). J values of Pt compounds are influenced both by the ligands trans to the uracil C(5) position and by the number of metal entities bound to a uracil ring. Both 2 and 5 were X-ray structurally characterized. 2: monoclinic system, space group P2(1)/c, a = 15.736(6) ?, b = 11.481(6) ?, c = 25.655 (10) ?, beta = 145.55(3) degrees, V = 2621.9(28) ?(3), Z = 4. 5: monoclinic system, space group P2(1)/c, a = 4.905(2) ?, b = 18.451(6) ?, c = 11.801(5) ?, beta = 94.47(3) degrees, V = 1064.77(72) ?(3), Z = 4.  相似文献   
95.
The correlation between β2‐, β3‐, and β2,3‐amino acid‐residue configuration and stability of helix and hairpin‐turn secondary structures of peptides consisting of homologated proteinogenic amino acids is analyzed (Figs. 1–3). To test the power of Zn2+ ions in fortifying and/or enforcing secondary structures of β‐peptides, a β‐decapeptide, 1 , four β‐octapeptides, 2 – 5 , and a β‐hexadecapeptide, 10 , have been devised and synthesized. The design was such that the peptides would a) fold to a 14‐helix ( 1 and 3 ) or a hairpin turn ( 2 and 4 ), or form neither of these two secondary structures (i.e., 5 ), and b) carry the side chains of cysteine and histidine in positions, which will allow Zn2+ ions to use their extraordinary affinity for RS? and the imidazole N‐atoms for stabilizing or destabilizing the intrinsic secondary structures of the peptides. The β‐hexadecapeptide 10 was designed to a) fold to a turn, to which a 14‐helical structure is attached through a β‐dipeptide spacer, and b) contain two cysteine and two histidine side chains for Zn complexation, in order to possibly mimic a Zn‐finger motif. While CD spectra (Figs. 6–8 and 17) and ESI mass spectra (Figs. 9 and 18) are compatible with the expected effects of Zn2+ ions in all cases, it was shown by detailed NMR analyses of three of the peptides, i.e., 2, 3, 5 , in the absence and presence of ZnCl2, that i) β‐peptide 2 forms a hairpin turn in H2O, even without Zn complexation to the terminal β3hHis and β3hCys side chains (Fig. 11), ii) β‐peptide 3 , which is present as a 14‐helix in MeOH, is forced to a hairpin‐turn structure by Zn complexation in H2O (Fig. 12), and iii) β‐peptide 5 is poorly ordered in CD3OH (Fig. 13) and in H2O (Fig. 14), with far‐remote β3hCys and β3hHis residues, and has a distorted turn structure in the presence of Zn2+ ions in H2O, with proximate terminal Cys and His side chains (Fig. 15).  相似文献   
96.
The success of perturbation calculations of second order for the NFE (“Nearly Free Electron”) metals and that of the two-parameter model of Pettifor for the transition elements show that the lattice-stability of the metals has simple physical reasons. Using the results of Harrison, Heine and Weaire, Deegan, and Pettifor, a model is developed which allows to explain the stability of the three metal lattices in terms of differences in the potentials. Only those potential differences are considered which are caused by the different packing of the lattices. With the aid of the virial theorem the band structure energy is connected with the potential bandstructure energy. The sequence of stability is predicted to be body centered cubic (bcc), hexagonal close packed (hcp), face centered cubic (fcc) with increasing valence electron concentration. The ranges of stability can be expressed in simple numbers. This simple model holds in principle for NFE as well as for transition metals because it contains no assumptions restricted to only one of these metal types. Deviations of the observed lattice stability from the model can be understood from the approximations involved.  相似文献   
97.
Structure of S-9,10-Dimethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane and 9,10-Diethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane S-9,10-Dimethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane ( 1 ) and 9,10-diethyl-1,3,5,7-tetraarsa-2,4,6,8-tetraoxaadamantane ( 2 ) have been prepared by the reaction of propionic acid, propionic anhydride and butyric acid, butyric anhydride, respectively, with arsenic(III)-oxide. The crystals of 1 are rhombic, a = 6.902(4), b = 11.121(5), c = 13.988(8), space group P212121. The crystals of 2 are monoclinic, a = 11.757(10), b = 11.255(10), c = 18.631 (18), β = 91.78(7), space group P21/n. The mean bond lengths and angles in 1 are AsO = 1.790 Å, AsC = 1.959 Å, OAsO = 100.60°, CAsO = 99.65°, AsOAs = 128.77°, AsCAs = 118.73°, and in 2 they are AsO = 1.780 Å, AsC = 1.978 Å, OAsO = 101.45°, CAsO = 99.55°, AsOAs = 129.64°, AsCAs = 117.72°.  相似文献   
98.
The lowest triplet state of azulene, T1(Az), can be populated efficiently by triplet energy transfer from the lowest triplet state of fluoranthene, T1(F1). In isopentane at temperatures 120 K ? T ? 193 K a delayed fluorescence S2(Az) → S0(Az) is found, caused by hetero-triplet—triplet annihilation T1(Az) + T1(Fl) → S2(Az) + S0(F1).  相似文献   
99.
Metabolism of Acetylenic Monocarboxylic and Dicarboxylic Acids Feeding of acetylenic monoacids with chain length of 11 to 18 C-atoms to rats led to excretion of dicarboxylic acids with retained triple bonds. 10-Octadecynoic acid led to the formation of metabolites with even and odd number of C-atoms, suggesting in addition to established ω- and β-oxidation an α-oxidative pathway.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号