首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11868篇
  免费   3626篇
  国内免费   4350篇
化学   6682篇
晶体学   352篇
力学   2858篇
综合类   417篇
数学   824篇
物理学   8711篇
  2024年   73篇
  2023年   305篇
  2022年   394篇
  2021年   349篇
  2020年   308篇
  2019年   370篇
  2018年   244篇
  2017年   346篇
  2016年   415篇
  2015年   455篇
  2014年   1031篇
  2013年   756篇
  2012年   710篇
  2011年   834篇
  2010年   841篇
  2009年   962篇
  2008年   1142篇
  2007年   801篇
  2006年   843篇
  2005年   755篇
  2004年   840篇
  2003年   945篇
  2002年   788篇
  2001年   743篇
  2000年   607篇
  1999年   477篇
  1998年   417篇
  1997年   396篇
  1996年   395篇
  1995年   423篇
  1994年   383篇
  1993年   265篇
  1992年   296篇
  1991年   240篇
  1990年   231篇
  1989年   237篇
  1988年   85篇
  1987年   50篇
  1986年   37篇
  1985年   15篇
  1984年   9篇
  1983年   14篇
  1982年   14篇
  1979年   2篇
  1975年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
水热合成法制备了不同磁性纳米洋葱碳(MCNOs)负载量(0%、1%、3%、5%)的MCNOs/CdS光催化剂。并通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(XPS)、紫外可见光光谱(UV-Vis)、磁滞回线测定仪(VSM)对其进行表征,探究了MCNOs负载比例对催化剂在可见光下降解RhB性能及机理的影响。结果表明,MCNOs能有效提高CdS的光催化效果,复合3%MCNOs后降解率为96%,与纯CdS相比降解率提高了30%,磁性分析表明,其具有良好的顺磁性并能实现催化剂的有效回收。MCNOs/CdS在可见光下催化降解RhB的一级反应动力学直线有较好的拟合度,表明制备的催化剂有较好的催化活性。  相似文献   
72.
73.
在288.15~323.15 K温度范围内,采用诱导期测定法研究了碳酸锂(Li2CO3)在有无添加NaCl的Li Cl-Na2CO3过饱和溶液中的成核动力学.通过OLI电解质与水化学物性分析软件内嵌的全组分模型严格计算Li2CO3在溶液中的过饱和度,研究了温度、过饱和度和Na Cl的添加量对Li2CO3成核诱导期的影响,并结合经典初级成核理论计算了活化能、固-液界面张力和接触角等成核动力学参数.结果显示,在相同的过饱和度下,Na Cl的添加使得Li2CO3的成核诱导期增长;添加Na Cl后Li2CO3成核反应的活化能从63.69 k J/mol(溶液中Cl?的超额含量Y=0)增加到72.85 k J/mol(溶液中Cl?的超额含量Y=0.5),表明Na Cl的添加抑制了Li...  相似文献   
74.
本研究以生物质/煤的焦油模型化合物(TMCs)为研究对象,在两阶段固定床实验上探究了铁基氧载体(70%Fe2O3/30%Al2O3)对TMCs的转化特性,考察了不同TMCs的反应性及其转化的影响因素。研究发现,TMCs与氧载体的反应活性为:苯酚>蒽>萘,且苯酚转化生成积炭的比例最多(64%),而萘转化生成积炭的比例最少(40%);氧载体与萘的反应程度相对较高,但容易导致氧载体的烧结。此外,积炭表征显示萘生成的积炭在三种TMCs中具有最高的稳定性。增加氧载体的用量和提高反应温度不仅有利于萘和蒽的进一步转化,而且能够增加气相产物中CO2的分率。由于苯酚分子具有较高的反应活性及较强的裂解效果导致其转化率随氧载体用量和反应温度的增加变化较小,然而,较高的反应温度(1000℃)导致焦油发生严重的裂解现象并产生大量积炭。三次循环实验结果表明与萘反应的氧载体失活最为严重。  相似文献   
75.
选用脱碱木质素作为原料,以热裂解气质联用技术(Py-GC/MS)研究木质素在350~600℃下热解产物成分和含量,并利用Joback法、 Lijie法和Tahami法3种基团贡献法计算了生物油各组成成分的临界参数和动力学直径,对木质素热解油产物的分子动力学直径分布特性进行计算.结果显示,愈创木基结构、紫丁香基结构、苯酚类、邻苯二酚类和芳烃类等5种芳香族化合物是350~600℃下木质素热解生物油的主要组成成分,其中愈创木基结构化合物的平均峰面积百分比达到70.7%.随着反应温度从350提高到600℃,分子动力学直径在0.560~0.610 nm区间内的木质素热解油组分含量从14.6%增加至31.3%.木质素热解生物油主要产物的动力学直径在0.560~0.710nm,表明一些孔径尺寸在此范围内的分子筛如SSZ-20、 ZSM-5和Beta可作为木质素裂解制备高品质芳烃燃料的催化剂.  相似文献   
76.
四环素在环境中难于降解,容易残留在环境中,影响生态系统和人体健康。埃洛石纳米管是一种天然硅酸盐矿物,具有均匀的纳米中空管状结构。本文通过化学键合以牛磺酸对埃洛石纳米管表面进行修饰得到改性的埃洛石纳米管(HNTs-Tau),显著提高其对四环素的吸附能力。系统研究pH、吸附时间、吸附温度及离子强度对吸附性能的影响。结果表明,HNTs-Tau在pH=6的弱酸性溶液下吸附效果最佳。振荡时间为2 min时,去除率可达到90%以上。在25℃下采用10 mg HNTs-Tau对800μg/mL的四环素溶液的吸附容量可以达到512.5 mg/g。采用4种动力学模型拟合,HNTs-Tau对四环素的吸附行为更加符合准二级动力学模型。采用2种热力学模型拟合,HNTs-Tau对四环素的吸附行为更加符合Freundlich模型,对四环素的最大吸附容量可以达到714.3 mg/g。  相似文献   
77.
陈畅  袁淑兰  李成 《化学教育》2023,(22):95-101
厌氧消化是自然界有机物质分解代谢的重要途径,对实现环境和经济的可持续发展具有重要意义。消化中产甲烷过程涉及众多生化反应,其规律很难准确描述。教师在生物化学课程中引入厌氧消化产甲烷动力学教学,设计了5个紧密衔接的教学模块,介绍了3种常见产甲烷动力学模型的推导过程、适用范围、参数特点,教授学生利用软件完成数据拟合的方法,并训练其对拟合结果进行分析。本教学改革通过将产甲烷动力学引入课堂,使学生在更好地理解复杂的厌氧消化反应过程基础知识的同时,构建了理论与实践应用间的桥梁,不仅掌握了精准定量描述厌氧消化过程中产甲烷规律的模型,还学到利用比较动力学参数来评价不同原料发酵规律差异的方法,为未来其参与实际生产和工程实践奠定了基础,获得了良好的教学效果。本文介绍了教学改革的具体内容,对完善生物化学的教学框架和改善教学质量具有重要意义,同时为环境工程、化学工程、新能源工程、生物工程等相关专业课程及实验教学的改革和探索提供了有益参考。  相似文献   
78.
以乙二醇为溶剂,氯化铁、氯化钴、氯化镍和醋酸铵为反应试剂,采用溶剂热法制备纳米NixCo1-xFe2O4(x=0、0.3、0.5、0.7、1)铁氧体空心微球,研究镍含量对铁氧体空心球的磁性与吸波性能的影响。借助X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)和网络分析仪对试样的物相组成、微观形貌和电磁特性进行表征。结果表明制备的镍钴铁氧体为尖晶石结构,且形貌为空心球,粒径在200nm左右。当x=0时,镍钴铁氧体空心球饱和磁化强度最大为81.7emu·g-1,反射损耗在1658.8MHz有最小值为-16.9dB。  相似文献   
79.
通过缓慢滴加焦磷酸钾的硝酸溶液到钼酸铵溶液中制得了大颗粒磷钼酸铵(AMP)。研究了AMP的成核速率(G)与晶体生长速率。与晶体生长速率相比成核速率的反应级数更高。最初,大颗粒磷钼酸铵的结晶过程处于相变反应控制的动力学区域,此时溶液的过饱和生成速率比过饱和消除速率高。晶体线生长速率与溶液的过饱和度先增加后降低。在滴加中期,过饱和消除速率增长到与其生成速率相当。在滴加后期,晶体成核速率快速增高,而晶体的线生长速率下降。晶体的成核速率成为过饱和消除的唯一控制步骤。因此,AMP成核大部分是在首先接触到滴加液的局部溶液中完成的。  相似文献   
80.
合成了Keggin结构锌取代杂多钨硅酸盐三乙醇胺电荷转移配合物α-Si W11Zn/TEA,用元素分析,IR,XRD和TG-DTG对其进行了表征。同时,采用TG-DTG技术研究了标题化合物在氮气气氛中的热分解机理及非等温动力学,结果表明,α-Si W11Zn/TEA的分解反应共有3个阶段,第一阶段分解反应的表观活化能Ea与指前因子ln A分别为:4.81k J·mol-1和7.36 min-1,机理函数为G(α)=α+(1-α)ln(1-α);第二步分解过程的表观活化能Ea与指前因子ln A分别为:7.27 k J·mol-1和11.48min-1,机理函数为:G(α)=[-ln(1-α)]0.1;第三步分解过程的表观活化能Ea与指前因子ln A分别为17.16 k J·mol-1和8.999 min-1机理函数为:G(α)=1-(1-α)4。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号