首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1720篇
  免费   524篇
  国内免费   173篇
化学   2051篇
晶体学   42篇
力学   15篇
综合类   10篇
数学   3篇
物理学   296篇
  2024年   3篇
  2023年   28篇
  2022年   52篇
  2021年   64篇
  2020年   120篇
  2019年   95篇
  2018年   83篇
  2017年   74篇
  2016年   186篇
  2015年   143篇
  2014年   115篇
  2013年   199篇
  2012年   154篇
  2011年   90篇
  2010年   104篇
  2009年   94篇
  2008年   96篇
  2007年   101篇
  2006年   94篇
  2005年   94篇
  2004年   63篇
  2003年   81篇
  2002年   80篇
  2001年   32篇
  2000年   14篇
  1999年   10篇
  1998年   4篇
  1997年   31篇
  1996年   20篇
  1995年   32篇
  1994年   8篇
  1993年   9篇
  1992年   10篇
  1991年   5篇
  1990年   3篇
  1989年   7篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1970年   1篇
排序方式: 共有2417条查询结果,搜索用时 15 毫秒
71.
72.
A series of air‐stable spiro‐fused ladder‐type boron(III) compounds has been designed, synthesized, and the electrochemistry and photophysical behavior have been characterized. By simply varying the substituents on the pyridine ring and extending the π‐conjugation of the spiro framework, the emission color of these compounds can be easily fine‐tuned spanning the visible spectrum from blue to red. All compounds exhibit a broad and structureless emission band across the entire visible region, assigned as an intramolecular charge‐transfer transition originating from the thiophene of the spiro framework to the pyridine‐borane moieties. In addition, these compounds demonstrate high photoluminescence quantum yields of up to 0.81 in dichloromethane solution and 0.86 in doped thin films. Some of the compounds have also been employed as emissive materials, in which solution‐processed organic light‐emitting devices (OLEDs) with tunable emission colors spanning the visible spectrum from blue, green to red have been realized, demonstrating the potential applications of these boron compounds in OLEDs.  相似文献   
73.
Two unprecedented mixed BIII/PV complexes of meso‐triaryl 25‐oxasmaragdyrins were synthesized in appreciable yields under mild reaction conditions. These unusual 25‐oxasmaragdyrin complexes containing one or two seven‐membered heterocyclic rings comprised of five different atoms (B, C, N, O, and P) were prepared by reacting B(OH)(Ph)‐smaragdyrin and B(OH)2‐smaragdyrin complexes, respectively, with POCl3 in toluene at reflux temperature. The products were characterized by HRMS and 1D‐ and 2D‐NMR spectroscopy. X‐ray crystallography of one of the mixed BIII/PV smaragdyrin complexes indicated that the macrocycle is significantly distorted and contains a stable seven‐membered heterocyclic ring within the macrocycle. The bands in the absorption and emission spectra were bathochromically shifted with reduced quantum yields and singlet‐state lifetimes relative to the free base, meso‐triaryl 25‐oxasmaragdyrin. The mixed BIII/PV complexes were difficult to oxidize but easier to reduce than the free base. The DFT‐optimized structure of the 25‐oxasmaragdyrin complex with two seven‐membered heterocycles indicated that it was a bicyclic spiro compound with two half‐chair‐like conformers. This was in contrast to the chair‐like conformation of the complex with a single seven‐membered heterocyclic ring. Moreover, incorporation of a second phosphate group in the former case stabilized the bonding geometry and resulted in higher stability, which was reflected in the bathochromic shift of the absorption spectra, more‐positive oxidation potential, and less‐negative reduction potential.  相似文献   
74.
We report the preparation of N‐heterocyclic carbene (NHC)‐stabilized compounds containing P=B double bonds. The reaction of the highly functionalized phosphinoborane Mes*(SiMe3)P?B(Cl)Cp* with Lewis bases allows access to base‐stabilized phosphinidene boranes Mes*P=B(L)Cp* (L=4‐dimethylaminopyridine (DMAP), NHC) by Me3SiCl elimination. The formation of these species is shown to proceed through transient borylphosphide anions generated by Me3Si abstraction.  相似文献   
75.
<正>Carboranes are a class of boron hydride clusters in which one or more of the BH vertices are replaced by CH units.Unlike small boranes, carboranes are kinetically and thermodynamically very stable as well as relatively chemically inert, which are often called three-dimensional relatives of benzenes. They are finding many applications in medicine as boron neutron capture therapy(BNCT) agents, in nanomaterials/supramolecular design as building blocks, and as ligands for transition metals [1]. However, their unique structures make derivatization difficult, which limits their application scope. To this end, there is a need to develop  相似文献   
76.
77.
Most trivalent boron reagents are electrophiles owing to the vacancy for two electrons to fill the outer orbital of boron; however, interestingly, trivalent boron compounds can change their electrophilic character to a nucleophilic character by only changing the nature of the substituents on the boron atoms. With the help of computational tools, we have analyzed the structural‐ and electronic properties of boryl fragments that were either bonded to main‐group metals or coordinated to transition‐metals/rare‐earth‐metals and we have designed a map that might help to identify certain trends. This trend map will be useful for selecting an appropriate trivalent boron compound, depending on the sought reactivity.  相似文献   
78.
79.
80.
Developing the low-cost and efficient single-atom catalysts (SACs) for nitrogen reduction reaction (NRR) is of great importance while remains as a great challenge. The catalytic activity, selectivity and durability are all fundamentally related to the elaborate coordination environment of SACs. Using first-principles calculations, we investigated the SACs with single transition metal (TM) atom supported on defective boron carbide nitride nanotubes (BCNTs) as NRR electrocatalysts. Our results suggest that boron-vacancy defects on BCNTs can strongly immobilize TM atoms with large enough binding energy and high thermal/structural stability. Importantly, the synergistic effect of boron nitride (BN) and carbon domains comes up with the modifications of the charge polarization of single-TM-atom active site and the electronic properties of material, which has been proven to be the essential key to promote N2 adsorption, activation, and reduction. Specifically, six SACs (namely V, Mn, Fe, Mo, Ru, and W atoms embedded into defective BCNTs) can be used as promising candidates for NRR electrocatalysts as their NRR activity is higher than the state-of-the art Ru(0001) catalyst. In particular, single Mo atom supported on defective BCNTs with large tube diameter possesses the highest NRR activity while suppressing the competitive hydrogen evolution reaction, with a low limiting potential of −0.62 V via associative distal path. This work suggests new opportunities for driving NH3 production by carbon-based single-atom electrocatalysts under ambient conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号