首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   73篇
  国内免费   45篇
化学   333篇
晶体学   3篇
综合类   2篇
物理学   79篇
  2023年   8篇
  2022年   11篇
  2021年   29篇
  2020年   50篇
  2019年   33篇
  2018年   25篇
  2017年   24篇
  2016年   36篇
  2015年   32篇
  2014年   23篇
  2013年   24篇
  2012年   12篇
  2011年   21篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   10篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1990年   1篇
  1983年   1篇
排序方式: 共有417条查询结果,搜索用时 15 毫秒
61.
CO oxidation over ceria-supported Au22 nanoclusters shows strong dependence on the support shape: the lattice oxygen in CeO2 rods is more reactive than in the cubes and thus make rods a superior support for Au nanoclusters in catalyzing low temperature CO oxidation.  相似文献   
62.
The self‐assembled structures of atomically precise, ligand‐protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs) is presented. Unlike highly sophisticated DNA nanotechnology, this strategically simple hydrogen bonding‐directed self‐assembly of nanoclusters leads to octahedral nanocrystals encapsulating GNRs. Specifically, the p‐mercaptobenzoic acid (pMBA)‐protected atomically precise silver nanocluster, Na4[Ag44(pMBA)30], and pMBA‐functionalized GNRs were used. High‐resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H‐bonding, leading to octahedral symmetry. The use of water‐dispersible gold nanoclusters, Au≈250(pMBA)n and Au102(pMBA)44, also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles are a new category of precision hybrids with diverse possibilities.  相似文献   
63.
The weak photoluminescence of silver nanoclusters prevents their broad application as luminescent nanomaterials. Recent experiments, however, have shown that gold doping can significantly enhance the photoluminescence intensity of Ag29 nanoclusters but the molecular and physical origins of this effect remain unknown. Therefore, we have computationally explored the geometric and electronic structures of Ag29 and gold‐doped Ag29?xAux (x=1–5) nanoclusters in the S0 and S1 states. We found that 1) relativistic effects that are mainly due to the Au atoms play an important role in enhancing the fluorescence intensity, especially for highly doped Ag26Au3, Ag25Au4, and Ag24Au5, and that 2) heteronuclear Au?Ag bonds can increase the stability and regulate the fluorescence intensity of isomers of these gold‐doped nanoclusters. These novel findings could help design doped silver nanoclusters with excellent luminescence properties.  相似文献   
64.
基于Hg~(2+)与DNA中胸腺嘧啶(T)结合的高度特异性和DNA铜纳米簇的荧光增强性质,构建了一种简便、灵敏检测汞离子的新方法.当Hg~(2+)存在时,聚T单链DNA(P1)通过T-Hg~(2+)-T特异性结合形成双链DNA,Cu~(2+)经抗坏血酸钠还原后生成的中间体Cu+与双链DNA螺旋结构间的氢键部分有强的结合力,促使Cu0附着聚集在双链DNA上形成铜纳米簇,导致体系荧光增强,从而实现对汞离子的高灵敏检测.体系荧光强度与Hg~(2+)浓度的对数值成正比,对Hg~(2+)检测的线性范围为1.0 nmol/L~10μmol/L,检出限达0.4 nmol/L,对湖水样品中Hg~(2+)检测的回收率达到97.2%~106.6%.与传统方法相比,该方法具有无需标记、检出限低及选择性好等优点,可用于环境水体中汞离子的测定.  相似文献   
65.
The concept of aggregation‐induced emission (AIE) has been exploited to render non‐luminescent CuISR complexes strongly luminescent. The CuISR complexes underwent controlled aggregation with Au0. Unlike previous AIE methods, our strategy does not require insoluble solutions or cations. X‐ray crystallography validated the structure of this highly fluorescent nanocluster: Six thiolated Cu atoms are aggregated by two Au atoms (Au2Cu6 nanoclusters). The quantum yield of this nanocluster is 11.7 %. DFT calculations imply that the fluorescence originates from ligand (aryl groups on the phosphine) to metal (CuI) charge transfer (LMCT). Furthermore, the aggregation is affected by the restriction of intramolecular rotation (RIR), and the high rigidity of the outer ligands enhances the fluorescence of the Au2Cu6 nanoclusters. This study thus presents a novel strategy for enhancing the luminescence of metal nanoclusters (by the aggregation of active metal complexes with inert metal atoms), and also provides fundamental insights into the controllable synthesis of highly luminescent metal nanoclusters.  相似文献   
66.
Using D-proline (D-Pro) as the reducing agent and capper, D-Pro@AuNCs was rapidly constructed. Its fluorescence could be quenched by AuNPs. Due to the electrostatic interaction between anticancer drug Raltitrexed (RTX) and AuNPs induced fluorescence "turn-on" principle, the resultant fluorescent probe exhibited good selectivity and sensitivity for detecting RTX in rat serums.  相似文献   
67.
68.
69.
We investigate the reactivity of various PtxPdy combinations (with x + y = 10 and various x:y ratios) towards the adsorption of specific intermediates of the oxygen reduction, using the B3PW91 hybrid density functional theory. The reactivity is shown to be not only sensitive to the composition of the cluster, but also to the atomic distribution. The calculations indicate that two different ensembles: one ordered and one randomly mixed, with overall composition Pt3Pd7 are thermodynamically more favorable than pure Pt10 for the oxygen reduction reaction. The reasons for this behavior are clearly explained in terms of the atomic and electronic distribution, which makes the Pd atoms to act as electron donors both to Pt atoms and to the adsorbates, thus the reactivity of the Pd atoms in such environment becomes intermediate between Pt and Pd. Moreover, it is found that in a mixed Pt3Pd7 state the electronic distribution makes the average atom more similar to Pt than to Pd, whereas in an ordered Pt3Pd7 cluster, the average atom is more similar to Pd than to Pt.  相似文献   
70.
We chemically modified the surface of kaolinite with nanoclusters of aluminum hydroxo cations. We have determined their composition and sizes. We have used IR spectroscopy to establish the interaction between the carbonyl and -diketone groups of fulvic and humic acids with the Lewis acid sites: coordination unsaturated Al3+ cations of the Al13 nanoclusters. We have obtained spectral evidence for hydrogen bond formation between the carboxyl groups of fulvic acid and the hydroxyl groups of the aluminum hydroxo cations.__________Translated from Teoreticheskaya i Éksperimentalnaya Khimiya, Vol. 41, No. 1, pp. 45–49, January–February, 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号