首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   819篇
  免费   192篇
  国内免费   19篇
化学   1004篇
晶体学   2篇
综合类   2篇
物理学   22篇
  2023年   4篇
  2022年   8篇
  2021年   37篇
  2020年   48篇
  2019年   47篇
  2018年   20篇
  2017年   18篇
  2016年   61篇
  2015年   60篇
  2014年   65篇
  2013年   73篇
  2012年   65篇
  2011年   53篇
  2010年   45篇
  2009年   45篇
  2008年   70篇
  2007年   49篇
  2006年   44篇
  2005年   57篇
  2004年   38篇
  2003年   35篇
  2002年   15篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   7篇
  1997年   15篇
  1996年   10篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有1030条查询结果,搜索用时 37 毫秒
61.
We report the synthesis of a cyclen‐based ligand (4,10‐bis[(1‐oxidopyridin‐2‐yl)methyl]‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid= L1 ) containing two acetate and two 2‐methylpyridine N‐oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the GdIII complex may be sufficient for biological applications. A detailed structural study of the complexes by 1H NMR spectroscopy and DFT calculations indicates that they adopt an anti‐Δ(λλλλ) conformation in aqueous solution, that is, an anti‐square antiprismatic (anti‐SAP) isomeric form, as demonstrated by analysis of the 1H NMR paramagnetic shifts induced by YbIII. The water‐exchange rate of the GdIII complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$ =6.7×106 s?1, about a quarter of that for the mono‐oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The 2‐methylpyridine N‐oxide chromophores can be used to sensitize a wide range of LnIII ions emitting in both the visible (EuIII and TbIII) and NIR (PrIII, NdIII, HoIII, YbIII) spectral regions. The emission quantum yield determined for the YbIII complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$ =7.3(1)×10?3) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.  相似文献   
62.
Two series of isostructural C3‐symmetric Ln3 complexes Ln3 ? [BPh4] and Ln3 ? 0.33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino‐bis(phenol) ligand. X‐ray studies reveal that LnIII ions are connected by one μ2‐phenoxo and two μ3‐methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal‐prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self‐consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To reduce the electronic repulsion from the coordinating oxygen atom with the shortest Dy?O distance, the local magnetic moments are oriented almost perpendicular to the Dy3 plane, thus leading to a paramagnetic ground state. CASSCF plus restricted active space state interaction (RASSI) calculations also show that the ground and first excited state of the DyIII ions are separated by approximately 150 and 177 cm?1, for Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6], respectively. As expected for these large energy gaps, Dy3 ? [BPh4] and Dy3 ? 0.33[Dy(NO3)6] exhibit, under zero direct‐current (dc) field, thermally activated slow relaxation of the magnetization, which overlap with a quantum tunneling relaxation process. Under an applied Hdc field of 1000 Oe, Dy3 ? [BPh4] exhibits two thermally activated processes with Ueff values of 34.7 and 19.5 cm?1, whereas Dy3 ? 0.33[Dy(NO3)6] shows only one activated process with Ueff=19.5 cm?1.  相似文献   
63.
The spectroscopic behavior of ionic Eu3+ or Tb3+ complexes of an aromatic carboxyl‐functionalized organic salt as well as those of the hybrid materials derived from adsorption of the ionic complexes on Laponite clay are reported. X‐ray diffraction (XRD) patterns suggest that the complexes are mainly adsorbed on the outer surfaces of the Laponite disks rather than intercalated within the interlayer spaces. Photophysical data showed that the energy‐transfer efficiency from the ligand to Eu3+ ions in the hybrid material is increased remarkably with respect to the corresponding ionic complex. The hybrid material containing the Eu3+ complex shows bright red emission from the prominent 5D07F2 transition of Eu3+ ions, and that containing the Tb3+ complex exhibits bright green emission due to the dominant 5D47F5 transition of Tb3+ ions.  相似文献   
64.
Two [FeLn2Fe(μ3‐OH)2(teg)2(N3)2(C6H5COO)4] compounds (where Ln=YIII and DyIII; teg=triethylene glycol anion) have been synthesized and studied using SQUID and Mössbauer spectroscopy. The magnetic measurements on both compounds indicate dominant antiferromagnetic interactions between the metal centers. Analysis of the 57Fe Mössbauer spectra complement the ac magnetic susceptibility measurements, which show how a static magnetic field can quench the slow relaxation of magnetization generated by the anisotropic DyIII ions.  相似文献   
65.
The stability trends across the lanthanide series of complexes with the polyaminocarboxylate ligands TETA4? (H4TETA=2,2′,2′′,2′′′‐(1,4,8,11‐tetraazacyclotetradecane‐1,4,8,11‐tetrayl)tetraacetic acid), BCAED4? (H4BCAED=2,2′,2′′,2′′′‐{[(1,4‐diazepane‐1,4‐diyl)bis(ethane‐2,1‐diyl)]bis(azanetriyl)}tetraacetic acid), and BP18C62? (H2BP18C6=6,6′‐[(1,4,10,13‐tetraoxa‐7,16‐diazacyclooctadecane‐7,16‐diyl)bis(methylene)]dipicolinic acid) were investigated using DFT calculations. Geometry optimizations performed at the TPSSh/6‐31G(d,p) level, and using a 46+4fn ECP for lanthanides, provide bond lengths of the metal coordination environments in good agreement with the experimental values observed in the X‐ray structures. The contractions of the Ln3+ coordination spheres follow quadratic trends, as observed previously for different isostructural series of complexes. We show here that the parameters obtained from the quantitative analysis of these data can be used to rationalize the observed stability trends across the 4f period. The stability trends along the lanthanide series were also evaluated by calculating the free energy for the reaction [La( L )]n+/?(sol)+Ln3+(sol)→[Ln( L )]n+/?(sol)+La3+(sol). A parameterization of the Ln3+ radii was performed by minimizing the differences between experimental and calculated standard hydration free energies. The calculated stability trends are in good agreement with the experimental stability constants, which increase markedly across the series for BCAED4? complexes, increase smoothly for the TETA4? analogues, and decrease in the case of BP18C62? complexes. The resulting stability trend is the result of a subtle balance between the increased binding energies of the ligand across the lanthanide series, which contribute to an increasing complex stability, and the increase in the absolute values of hydration energies along the 4f period.  相似文献   
66.
Herein, we provide some structural evidence of the complexation color‐change of murexide solutions in presence of lanthanide, which has been used for decades in complexometric studies. For Ln=Sm to Lu and Y, the compounds crystallize as monomeric [Ln(Murex)3] ? 11 H2O with an N3O6 tricapped square‐antiprism environment, which are stable up to 250 °C. Single‐ion magnet (SIM) behavior is then observed on the YbIII derivative in an original nine‐coordinated environment. In‐field slow relaxation (Δ=(15.6±1) K; τ0=2.73×10?6 s) is observed with a very narrow distribution of the relaxation time (αmax=0.09). Magnetic and photophysical properties can be correlated. On one hand the analysis of NIR emission spectrum permits to have access to crystal field parameters and to compare them with those extracted from dc measurements. On the other hand, magnetic measurements permit to identify the nature of the M J states involved in the 2F5/22F7/2 luminescence spectrum. The gap between the low‐lying states is in agreement with the energy barrier obtained from magnetic slow‐relaxation measurement.  相似文献   
67.
This article describes a green synthetic approach to prepare water dispersible perovskite‐type Eu3+‐doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 °C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90 % of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+‐doped KZnF3 nanoparticles could be used as a tool for bioimaging.  相似文献   
68.
A new luminescence energy transfer (LET) system has been designed for the detection of thrombin in the near‐infrared (NIR) region by utilizing NIR‐to‐NIR upconversion lanthanide nanophosphors (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor. The use of upconverting NaYF4:Yb3+,Tm3+ nanoparticles with sharp NIR emission peaks upon NIR excitation by an inexpensive infrared continuous wave laser diode provided large spectral overlap between the donor and the acceptor. Both the Au NRs and carboxyl‐terminated NaYF4:Yb3+,Tm3+ UCNPs were first modified with different thrombin aptamers. When thrombin was added, a LET system was then formed because of the specific recognition between the thrombin aptamers and thrombin. The LET system was used to monitor thrombin concentrations in aqueous buffer and human blood samples. The limits of detection for thrombin are as low as 0.118 nM in buffer solution and 0.129 nM in human serum. The method was also successfully applied to thrombin detection in blood samples.  相似文献   
69.
The synthesis and evaluation of new extractants for spent nuclear fuel reprocessing are described. New bitopic ligands constituted of phenanthroline and 1,3,5‐triazine cores functionalized by picolinamide groups were designed. Synthetic routes were investigated and optimized to obtain twelve new polyaza‐heterocyclic ligands. In particular, an efficient and versatile methodology was developed to access non‐symmetric 2‐substituted‐4,6‐di(6‐picolin‐2‐yl)‐1,3,5‐triazines from the 1,3,5‐triazapentadiene precursor in the presence of anhydride reagents. Extraction studies showed the ability of both ligand series to extract and separate actinides selectively at different oxidation states (UVI, NpV,VI, AmIII, CmIII, and PuIV) from an acidic solution (3 M HNO3). Phenanthroline‐based ligands show the most promising efficiency for use in the group actinide extraction (GANEX) process due to a higher number of donor nitrogen atoms and a suitable pre‐organization of the dipicolinamide‐1,10‐phenanthroline architecture.  相似文献   
70.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号