首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report that the luminescence of upconverting luminescent nanoparticles (UCLNPs) is quenched by heavy metal ions and halide ions in aqueous solution. The UCLNPs consist of hexagonal NaYF4 nanocrystals doped with trivalent rare earth ions and were synthesized by both the oleic acid (solvothermal) method and the ethylenediaminetetraacetic acid (co‐precipitation) method. Quenching was studied for the CuII, HgII, PbII, CdII, CoII, AgI, FeIII, ZnII, bromide, and iodide ions and is found to be particularly strong for HgII. Stern–Volmer plots are virtually linear up to quencher concentrations of 10–25 mM , but deviate from linearity at higher quencher concentrations, because static quenching causes an additional effect. The UCLNPs display two main emission bands (blue, green, red or near‐infrared), and the quenching efficiencies for these are found to be different. The effect seems to be generally associated with UCLNPs because it was observed for all UCLNPs doped with trivalent lanthanide ions including YbIII, ErIII, HoIII, and TmIII. The results are discussed in terms of quenching mechanisms and with respect to potential applications such as optical sensing.  相似文献   

2.
Silica xerogels doped with Eu3+ ions and co‐doped with Eu3+ ions and CdS nanoparticles were prepared using a two‐step hydrolysis process. The effect of temperature on photoluminescence properties of Eu3+‐doped silica xerogel was investigated. The results showed that the photoluminescence of Eu3+‐doped silica xerogel was significantly dependent on the temperature of heat treatment. The study of the photoluminescence of co‐doped xerogels showed that the defect emission of silica was weakened due to competition among defects, CdS nanoparticles, and Eu3+ ions.  相似文献   

3.
This work demonstrates luminescence resonance energy transfer (LRET) sensors based on lanthanide‐doped nanoparticles as donors (D) and gold nanoparticles as acceptors (A), combined through electrostatic interactions between the oppositely charged nanoparticles. Negatively charged lanthanide‐doped nanoparticles, YVO4:Eu and LaPO4:Ce,Tb, with high luminescence quantum yield and good water‐solubility, are synthesized through a polymer‐assisted hydrothermal method. Positively charged polyhedral and spherical gold nanoparticles exhibit surface plasmon resonance (SPR) bands centered at 623 and 535 nm, respectively. These bands overlap well with the emission of the Eu3+ and Tb3+ ions within the lanthanide nanoparticles. Herein, the gold nanoparticles are synthesized through a seed‐mediated cetyltrimethylammonium bromide (CTAB)‐assisted method. The assemblies of the oppositely charged donors and acceptors are developed into LRET‐based sensors exhibiting a donor quenching efficiency close to 100 %.  相似文献   

4.
采用液相法成功制备了MWCNTs负载NaGdF4:Tb3+,Eu3+纳米粒子的磁光热多功能复合纳米材料,并用XRD,SEM和EDS对其结构、组成和形貌进行了表征,结果表明:NaGdF4:Tb3+,Eu3+纳米粒子为六方晶相,形貌为球形且尺寸分布均匀,直径大约为25 nm,并且均匀的包覆在MWCNTs的表面;通过PL,VSM和HTC对复合纳米材料的发光性能,磁性能和光热转换性能进行了表征,采用MTT法对多功能复合纳米材料的生物相容性进行了评估,结果表明:MWCNTs-NaGdF4:Tb3+,Eu3+复合纳米材料具有良好的多色发光性能、磁性能、光热转换性能、低的毒性和良好的生物相容性。该种磁光热多功能复合纳米材料在生物标记、生物成像、肿瘤诊疗等领域有着广泛的应用前景。  相似文献   

5.
Novel EuIII complexes with bidentate phosphine oxide ligands containing a bipyridine framework, i.e., [3,3′‐bis(diphenylphosphoryl)‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(BIPYPO)]) and [3,3′‐bis(diphenylphosphoryl)‐6,6′‐dimethyl‐2,2′‐bipyridine]tris(hexafluoroacetylacetonato)europium(III) ([Eu(hfa)3(Me‐BIPYPO)]), were synthesized for lanthanide‐based sensor materials having high emission quantum yields and effective chemosensing properties. The emission quantum yields of [Eu(hfa)3(BIPYPO)] and [Eu(hfa)3(Me‐BIPYPO)] were 71 and 73%, respectively. Metal‐ion sensing properties of the EuIII complexes were also studied by measuring the emission spectra of EuIII complexes in the presence of ZnII or CuII ions. The metal‐ion sensing and the photophysical properties of luminescent EuIII complexes with a bidentate phosphine oxide containing 2,2′‐bipyridine framework are demonstrated for the first time.  相似文献   

6.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

7.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

8.
It was found that calcium carbonate (CaCO3) and hydroxyapatite (Ca10(OH)2(PO4)6), which are two crucial constituents of the most abundant minerals in nature and very important bioinorganic components in the tissues of mineralizing organisms, can form solid solutions in a wide range of PO43?/CO32? (P/C) ratios at low temperature when prepared as ultrathin nanowire structures. This is due to the special reactivity of ultrasmall nanocrystals, which can effectively lower the synthetic temperature and promote the formation of solid solutions. The as‐prepared ultrathin nanowires with suitable P/C ratios presented strong blue luminescence due to the existence of abundant defects strengthened by CO32?. If used as the matrix, the as‐prepared ultrathin nanowires demonstrated bright green or red luminescent properties when doped with Tb3+ or Eu3+ ions, and simultaneously retained their original morphologies. These three kinds of fluorescent nanowires could reproduce a full range of luminescence colors based on additive color mixtures of the three primary colors (red, green, and blue). In addition, under the same reaction system, ultrafine rare‐earth‐doped (Ce3+, Tb3+, Eu3+) nanowires (about 1 nm in diameter) were synthesized by using a one‐step hydrothermal process, which further pushed the size of the Ca‐PO4‐CO3 nanobuilding blocks to one unit cell region. These ultrafine nanowires displayed excellent film‐forming properties and the ability to absorb UV radiation.  相似文献   

9.
Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3Bpy and Eu(DBM)3Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2′-bipyridine). The 613 nm emission of Eu3+ was observed under excitation of Yb3+ at 980 nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+, resulting in a high quantum yield of 0.67 % at 2.1 W cm−2. The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+-based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.  相似文献   

10.

Abstract  

A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates.  相似文献   

11.
A new class of lanthanide‐doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium‐enriched core–shell NaErF4:Tm (0.5 mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+‐Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700‐fold enhancement) and near‐infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red‐emitting upconversion nanoprobes for biological applications.  相似文献   

12.
13.
The complex formation of d‐metal ions at the interface of TbIII‐doped silica nanoparticles modified by amino groups is introduced as a route to sensing d‐metal ions and some organic molecules. Diverse modes of surface modification (covalent and noncovalent) are used to fix amino groups onto the silica surface. The interfacial binding of d‐metal ions and complexes is the reason for the TbIII‐centered luminescence quenching. The regularities and mechanisms of quenching are estimated for the series of d‐metal ions and their complexes with chelating ligands. The obtained results reveal the interfacial binding of CuII ions as the basis of their quantitative determination in the concentration range 0.1–2.5 μM by means of steady‐state and time‐resolved fluorescence measurements. The variation of chelating ligands results in a significant effect on the quenching regularities due to diverse binding modes (inner or outer sphere) between amino groups at the interface of nanoparticles and FeIII ions. The applicability of the steady‐state and time‐resolved fluorescence measurements to sense both FeIII ions and catechols in aqueous solution by means of TbIII‐doped silica nanoparticles is also introduced.  相似文献   

14.
One of the most critical and yet unsolved issues is the effective monitoring of multiple heavy metal ions in complex systems through their specific function in fluorescence detection. In this work, luminescence-active cadmium base metal-organic frameworks (Cd-MOFs) based on the planar and rigid π-conjugated structure ligand benzo-(1,2;3,4;5,6)-tris (thiophene-2’-carboxylic acid) (H3BTTC) was chosen. A series of sensing experiments demonstrated that the Cd-MOFs exhibits selective and sensitive response for Fe3+ and Eu3+ through fluorescence “turn off” and “antenna effect” respectively. In addition, the encapsulation of Eu3+ inside the Cd-MOFs (Eu3+@Cd-MOFs) led to an excellent probe with dual emission. To this end, a programmable fluorescence platform was developed to detect Fe3+ and Cu2+, in which the emission peaks of both the ligand and Eu3+ are completely quenched by Fe3+. The ratiometric detection of Cu2+ leads to a decrease in Eu3+ emission, while the ligand emission remains stable. To demonstrate the strategy, the fluorescence (Output) of Cd-MOFs, Eu3+@Cd-MOFs, and the analytes (Eu3+, Fe3+, and Cu2+, input) achieved elementary Boolean logic operations (OR, NOR, AND) and they constitute a logic fluorescent chemosensor to analyze Fe3+ and Cu2+ synchronously.  相似文献   

15.
A series of novel KBaSc2(PO4)3:Ce3+/Eu2+/Tb3+phosphors are prepared using a solid‐state reaction. X‐ray diffraction analysis and Rietveld structure refinement are used to check the phase purity and crystal structure of the prepared samples. Ce3+‐ and Eu2+‐doped phosphors both have broad excitation and emission bands, owing to the spin‐ and orbital‐allowed electron transition between the 4f and 5d energy levels. By co‐doping the KBaSc2(PO4)3:Eu2+ and KBaSc2(PO4)3:Ce3+ phosphors with Tb3+ ions, tunable colors from blue to green can be obtained. The critical distance between the Eu2+ and Tb3+ ions is calculated by a concentration quenching method and the energy‐transfer mechanism for Eu2+→Tb3+ is studied by utilizing the Inokuti–Hirayama model. In addition, the quantum efficiencies of the prepared samples are measured. The results indicate that KBaSc2(PO4)3:Eu2+,Tb3+ and KBaSc2(PO4)3:Ce3+,Tb3+ phosphors might have potential applications in UV‐excited white‐light‐emitting diodes.  相似文献   

16.
Abstract  A EuIII cryptate complex constructed from a CuII cryptand with an L tBu ligand, [EuIIICu2II(L tBu)2(NO3)3(MeOH)], and the corresponding CaII and NaI cryptates, [CaIICu2II(L tBu)2(NO3)2(MeOH)2] and [NaICu2II(L tBu)2(Me2CO)](BPh4), have been synthesized and characterized in order to shed light on the essential role of CuII in the luminescence of a EuIII cryptate. The unprecedented role of a CuII cryptand makes it possible to produce lanthanide luminescence in a EuIII cryptate complex and is successfully elucidated by comparison with the corresponding CaII and NaI cryptates. Graphical abstract   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The efficient transformation of the hexadentate bispidinol 1 into carbamate derivatives yields functional bispidines enabling convenient functionalization for targeted imaging. The BODIPY‐substituted bispidine 3 combines a coordination site for metal ions, such as radioactive 64CuII, with a fluorescent unit. Product 3 was thoroughly characterized by standard analytical methods, single crystal X‐ray diffraction, radiolabeling, and photophysical analysis. The luminescence of ligand 3 was found to be strongly dependent on metal ion coordination: CuII quenches the BODIPY fluorescence, whereas NiII and ZnII ions do not affect it. It follows that, in imaging applications with the positron emitter 64CuII, residues of its origin from enriched 64Ni and the decay products 64NiII and 64ZnII, efficiently restore the fluorescence of the ligand. This allows for monitoring of the emitted radiation as well as the fluorescence signal. The stability of the 64CuII? 3 complex is investigated by transmetalation experiments with ZnII and NiII, using fluorescence and radioactivity detection, and the results confirm the high stability of 64CuII? 3 . In addition, metal complexes of ligand 3 with the lanthanide ions TbIII, EuIII, and NdIII are shown to exhibit emission of the BODIPY ligand and the lanthanide ion, thus enabling dual emission detection.  相似文献   

18.
An anhydrous orthophosphate, K3Eu5(PO4)6 (tripotassium pentaeuropium hexaphosphate), has been prepared by a high‐temperature solid‐state reaction combined with hydrothermal synthesis, and its crystal structure was determined by single‐crystal X‐ray diffraction analysis (SC‐XRD). The results show that the compound crystallizes in the monoclinic space group C2/c and the structure features a three‐dimensional framework of [Eu5(PO4)6], with the tunnel filled by K+ ions. The IR spectrum, UV–Vis spectrum and luminescence properties of polycrystalline samples of K3Eu5(PO4)6, annealed at temperatures of 650, 700, 750, 800 and 850 °C, were investigated. Although with a full Eu3+ concentration (9.96 × 1021 ions cm?3), the self‐activated phosphor K3Eu5(PO4)6 shows s strong luminescence emission intensity with a quantum yield of 37%. Under near‐UV light excitation (393 nm), the series of samples shows the characteristic emissions of Eu3+ ions in the visible region from 575 to 715 nm. The sample sintered at 800 °C gives the strongest emission and its lifetime sintered at 800 °C (1.88 ms) is also the longest of all.  相似文献   

19.
Sunlight‐excitable orange or red persistent oxide phosphors with excellent performance are still in great need. Herein, an intense orange‐red Sr3?xBaxSiO5:Eu2+,Dy3+ persistent luminescence phosphor was successfully developed by a two‐step design strategy. The XRD patterns, photoluminescence excitation and emission spectra, and the thermoluminescence spectra were investigated in detail. By adding non‐equivalent trivalent rare earth co‐dopants to introduce foreign trapping centers, the persistent luminescence performance of Eu2+ in Sr3SiO5 was significantly modified. The yellow persistent emission intensity of Eu2+ was greatly enhanced by a factor of 4.5 in Sr3SiO5:Eu2+,Nd3+ compared with the previously reported Sr3SiO5:Eu2+, Dy3+. Furthermore, Sr ions were replaced with equivalent Ba to give Sr3?xBaxSiO5:Eu2+,Dy3+ phosphor, which shows yellow‐to‐orange‐red tunable persistent emissions from λ=570 to 591 nm as x is increased from 0 to 0.6. Additionally, the persistent emission intensity of Eu2+ is significantly improved by a factor of 2.7 in Sr3?xBaxSiO5:Eu2+,Dy3+ (x=0.2) compared with Sr3SiO5:Eu2+,Dy3+. A possible mechanism for enhanced and tunable persistent luminescence behavior of Eu2+ in Sr3?xBaxSiO5:Eu2+,RE3+ (RE=rare earth) is also proposed and discussed.  相似文献   

20.
A new dinuclear RuII polypyridyl complex, [(bpy)2Ru(H2bpip)Ru(bpy)2]4+ ( RuH2bpip , bpy=2,2‐bipyridine, H2bpip=2,6‐pyridyl(imidazo[4,5‐f][1,10]phenanthroline), was developed to act as a one‐ and two‐photon luminescent probe for biological Cu2+ detection. This RuII complex shows a significant two‐photon absorption cross section (400 GM) and displays a remarkable one‐ and two‐photon luminescence switch in the presence of Cu2+ ions. Importantly, RuH2bpip can selectively recognise Cu2+ in aqueous media in the presence of other abundant cellular cations (such as Na+, K+, Mg2+, and Ca2+), trace metal ions in organisms (such as Zn2+, Ag+, Fe3+, Fe2+, Ni2+, Mn2+, and Co2+), prevalent toxic metal ions in the environment (such as Cd2+, Hg2+, and Cr3+), and amino acids, with high sensitivity (detection limit≤3.33×10?8 M ) and a rapid response time (≤15 s). The biological applications of RuH2bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2bpip was, therefore, employed as a sensing probe for the detection of Cu2+ in living cells and zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号