首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5265篇
  免费   950篇
  国内免费   1032篇
化学   6511篇
晶体学   130篇
力学   67篇
综合类   48篇
数学   7篇
物理学   484篇
  2024年   2篇
  2023年   64篇
  2022年   74篇
  2021年   171篇
  2020年   321篇
  2019年   216篇
  2018年   189篇
  2017年   190篇
  2016年   343篇
  2015年   334篇
  2014年   364篇
  2013年   582篇
  2012年   510篇
  2011年   331篇
  2010年   260篇
  2009年   275篇
  2008年   305篇
  2007年   331篇
  2006年   323篇
  2005年   344篇
  2004年   316篇
  2003年   249篇
  2002年   144篇
  2001年   124篇
  2000年   119篇
  1999年   88篇
  1998年   72篇
  1997年   99篇
  1996年   83篇
  1995年   80篇
  1994年   69篇
  1993年   40篇
  1992年   71篇
  1991年   41篇
  1990年   35篇
  1989年   29篇
  1988年   12篇
  1987年   9篇
  1986年   10篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有7247条查询结果,搜索用时 15 毫秒
61.
The reaction‐force formalism is applied to carry out a detailed analysis of the mechanisms behind the enolization processes undergone by the complexes formed on interaction of uracil dimers with Cu2+ ions after spontaneous deprotonation of the resulting complexes. These enolization processes apparently involve a single proton transfer (PT) from an NH group to a carbonyl group of the same uracil moiety, which should involve a rather high activation barrier that prevents the process occurring. However, the reaction‐force, chemical‐potential, and electronic‐flux profiles unambiguously indicate that the actual mechanism involves three low‐barrier elementary steps, and this explains why enolization of the [Cu(uracil?H)(uracil)]+ complexes is a highly facile, assisted PT process. All of the observed PT processes show a typical profile for both the chemical potential and the electronic flux associated with the bond‐breaking and the bond‐formation processes.  相似文献   
62.
Selective oxidative cleavage of a C? C bond offers a straightforward method to functionalize organic skeletons. Reported herein is the oxidative C? C bond cleavage of ketone for C? N bond formation over a cuprous oxide catalyst with molecular oxygen as the oxidant. A wide range of ketones and amines are converted into cyclic imides with moderate to excellent yields. In‐depth studies show that both α‐C? H and β‐C? H bonds adjacent to the carbonyl groups are indispensable for the C? C bond cleavage. DFT calculations indicate the reaction is initiated with the oxidation of the α‐C? H bond. Amines lower the activation energy of the C? C bond cleavage, and thus promote the reaction. New insight into the C? C bond cleavage mechanism is presented.  相似文献   
63.
The first investigation into the ultraviolet (UV) photoluminescence of gadolinium(III) in the presence of copper(II) is reported. A melt‐quenched barium phosphate glass was used as a model matrix. The optical spectroscopy assessment shows that with increasing CuO concentration the Cu2+ absorption band grows steadily, whereas the UV emission from Gd3+ ions is progressively quenched. The data, thus, suggests the existence of a Gd3+→Cu2+ energy‐transfer process ocurring through quantum cutting. A downconversion/cross‐relaxation pathway proceeding through a virtual state in Gd3+ is proposed. These findings suggest gadolinium(III) could potentially be used in the optical sensing of copper(II).  相似文献   
64.
Graphene shells with a controllable number of layers were directly synthesized on Cu nanoparticles (CuNPs) by chemical vapor deposition (CVD) to fabricate a graphene‐encapsulated CuNPs (G/CuNPs) hybrid system for surface‐enhanced Raman scattering (SERS). The enhanced Raman spectra of adenosine and rhodamine 6G (R6G) showed that the G/CuNPs hybrid system can strongly suppress background fluorescence and increase signal‐to‐noise ratio. In four different types of SERS systems, the G/CuNPs hybrid system exhibits more efficient SERS than a transferred graphene/CuNPs hybrid system and pure CuNPs and graphene substrates. The minimum detectable concentrations of adenosine and R6G by the G/CuNPs hybrid system can be as low as 10?8 and 10?10 M , respectively. The excellent linear relationship between Raman intensity and analyte concentration can be used for molecular detection. The graphene shell can also effectively prevent surface oxidation of Cu nanoparticles after exposure to ambient air and thus endow the hybrid system with a long lifetime. This work provides a basis for the fabrication of novel SERS substrates.  相似文献   
65.
66.
A novel nanostructured copper‐based solid‐phase microextraction fiber was developed and applied for determining the two most common types of phthalate environmental estrogens (dibutyl phthalate and diethylhexyl phthalate) in aqueous samples, coupled to gas chromatography with flame ionization detection. The copper film was coated onto a stainless‐steel wire via an electroless plating process, which involved a surface activation process to improve the surface properties of the fiber. Several parameters affecting extraction efficiency such as extraction time, extraction temperature, ionic strength, desorption temperature, and desorption time were optimized by a factor‐by‐factor procedure to obtain the highest extraction efficiency. The as‐established method showed wide linear ranges (0.05–250 μg/L). Precision of single fiber repeatability was <7.0%, and fiber‐to‐fiber repeatability was <10%. Limits of detection were 0.01 μg/L. The proposed method exhibited better or comparable extraction performance compared with commercial and other lab‐made fibers, and excellent thermal stability and durability. The proposed method was applied successfully for the determination of model analytes in plastic soaking water.  相似文献   
67.
A simple protocol for the synthesis of dihydrobenzothiazines through regio‐ and stereoselective SN2‐type ring opening of N‐tosylaziridines with sulfur nucleophiles followed by copper‐powder‐mediated intramolecular C?N cyclization in excellent yields (up to 95 %) with high diastereo‐ and enantioselectivity (up to >99 %) is reported.  相似文献   
68.
Herein we present a simple method for fabricating core–shell mesostructured CuO@C nanocomposites by utilizing humic acid (HA) as a biomass carbon source. The electrochemical performances of CuO@C nanocomposites were evaluated as an electrode material for supercapacitors and lithium‐ion batteries. CuO@C exhibits an excellent capacitance of 207.2 F g?1 at a current density of 1 A g?1 within a potential window of 0–0.46 V in 6 M KOH solution. Significantly, CuO electrode materials achieve remarkable capacitance retentions of approximately 205.8 F g?1 after 1000 cycles of charge/discharge testing. The CuO@C was further applied as an anode material for lithium‐ion batteries, and a high initial capacity of 1143.7 mA h g?1 was achieved at a current density of 0.1 C. This work provides a facile and general approach to synthesize carbon‐based materials for application in large‐scale energy‐storage systems.  相似文献   
69.
采用电感耦合等离子体发射光谱法测定了铜渣精矿中砷、锑、铋、铅、锌、镁的量。其测定范围:ω(As):0.05%~0.45%,ω(Sb):0.07%~0.30%,ω(Bi):0.01%~0.20%,ω(Pb):1.00%~4.50%,ω(Zn):1.00%~4.50%,ω(Mg):0.10%~1.00%。经加标回收实验,各元素的加标回收率为92%~104%(n=3),相对标准偏差(RSD)小于5%(n=11)。方法准确快速可靠,适用于铜渣精矿中砷、锑、铋、铅、锌、镁量的同时测定.  相似文献   
70.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号