首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   13篇
  国内免费   70篇
化学   335篇
晶体学   1篇
力学   144篇
数学   43篇
物理学   168篇
  2023年   9篇
  2022年   10篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   5篇
  2017年   22篇
  2016年   28篇
  2015年   26篇
  2014年   33篇
  2013年   39篇
  2012年   32篇
  2011年   50篇
  2010年   40篇
  2009年   48篇
  2008年   45篇
  2007年   36篇
  2006年   39篇
  2005年   36篇
  2004年   26篇
  2003年   22篇
  2002年   13篇
  2001年   9篇
  2000年   12篇
  1999年   10篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   9篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   7篇
  1990年   1篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1975年   1篇
排序方式: 共有691条查询结果,搜索用时 15 毫秒
61.
纳米微晶的制备及其性质研究   总被引:2,自引:0,他引:2  
有机纳米微晶在纳米电子器件等方面具有应用前景, 已成为当前纳米科学的研究热点之一[1]. Nakanishi等[2,3]用再沉淀法制备出了有机纳米微晶, 但并未研究其生长机制和各种制备条件对生长过程的影响. 本文制备了不同粒径的纳米微晶, 研究了晶体结构和光谱性质的变化规律, 讨论了影响粒径大小和生长速率的因素, 为建立可行的有机微晶制备方法提供依据.  相似文献   
62.
In this paper, fluorescence correlation spectroscopy (FCS) was applied to measure the size of water-soluble quantum dots (QDs). The measurements were performed on a home-built FCS system based on the Stokes-Einstein equation. The obtained results showed that for bare CdTe QDs the sizes from FCS were larger than the ones from transmission electron microscopy (TEM). The brightness of QDs was also evaluated using FCS technique. It was found that the stability of the surface chemistry of QDs would be significantly improved by capping it with hard-core shell. Our data demonstrated that FCS is a simple, fast, and effective method for characterizing the fluorescent quantum dots, and is especially suitable for determining the fluorescent nanoparticles less than 10 nm in water solution.  相似文献   
63.
Non-aqueous size exclusion chromatography (SEC) of polystyrenes (as model analytes) is examined using the microscale molar mass sensor (μ-MMS) for detection. The μ-MMS is combined with SEC to demonstrate this simultaneously universal and molar mass selective detection method for polymer characterization. The μ-MMS is based on measuring the refractive index gradient (RIG) at two positions (upstream and downstream) within a T-shaped microfluidic channel. The RIG is produced from a sample stream (eluting analytes in the mobile phase) merging with a mobile phase stream (mobile phase only). The magnitude of the RIG is measured as a probe beam deflection angle and is related to analyte diffusion coefficient, the time allowed for analyte diffusion from the sample stream toward the mobile phase stream, and the bulk phase analyte refractive index difference relative to the mobile phase. Thus, two deflection angles are measured simultaneously, the upstream angle and the downstream angle. An angle ratio is calculated by dividing the downstream angle by the upstream angle. The μ-MMS was found to extend the useful molar mass calibration range of the SEC system (nominally limited by the total exclusion and total permeation regions from ∼100,000 g/mol to ∼800 g/mol), to a range of 3,114,000-162 g/mol. The injected concentration LOD (based on 3 s statistics) was 2 ppm for the upstream detection position. The point-by-point time-dependent ratio, termed a ‘ratiogram’, is demonstrated for resolved and overlapped peaks. Within detector band broadening produces some anomalies in the ratiogram shapes, but with highly overlapped distributions of peaks this problem is diminished. Ratiogram plots are converted to molar mass as a function of time, demonstrating the utility of SEC/μ-MMS to examine a complex polymer mixture.  相似文献   
64.
In this study, the effect of nanoparticle size on adsorption thermodynamics was investigated. The results of theoretical and experimental studies show that particle size significantly affects the equilibrium constant and thermodynamic properties of nanoadsorption. Relationships between the equilibrium constant, thermodynamic properties and particle size were derived using the thermodynamic theory of nanoadsorption. The equilibrium constant and thermodynamic properties were obtained by investigating the adsorption of Cu2+ onto different sizes of nano-ZnO and the adsorption of Ag+ onto different sizes of nano-TiO2. Good agreement was achieved between results obtained by experiments and predicted by theoretical analyses. The equilibrium constant and the molar Gibbs free energy of nanoadsorption were found to increase with smaller nanoparticle size. However, the effects of particle size on the molar enthalpy and the molar entropy are uncertain. In addition, the molar Gibbs free energy, the molar enthalpy, the molar entropy and the logarithm of the equilibrium constant are linearly related to the reciprocal of the diameter of the nanoparticle. The thermodynamic properties revealed in this study may provide important guidelines for research and application in the field of nanoadsorption.  相似文献   
65.
Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ1H NMR and HPLC. 1H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained.  相似文献   
66.
The effect of Co particle size on the Fischer-Tropsch synthesis (FTS) activity of carbon nanotube (CNT)-supported Co catalysts was investigated. Microemulsion (using water-to-surfactant molar ratios of 2 to12) and impregnation techniques were used to prepare catalysts with different Co particle sizes. Kinetic studies were performed to understand the effect of Co particle size on catalytic activity. Size-dependent kinetic parameters were developed using a thermodynamic method, to evaluate the structural sensitivity of the CNT-supported Co catalysts. The size-independent FTS reaction rate constant and size-independent adsorption parameter increased with increasing reac-tion temperature. The Polani parameter also depended on catalyst particle size, because of changes in the catalyst surface coverage.  相似文献   
67.
The dynamics of tracers in crowded matrix is of interest in various areas of physics, such as the diffusion of proteins in living cells. By using two-dimensional (2D) Langevin dynamics simulations, we investigate the diffusive properties of a tracer of a diameter in crowded environments caused by randomly distributed crowders of a diameter. Results show that the emergence of subdiffusion of a tracer at intermediate time scales depends on the size ratio of the tracer to crowders δ. If δ falls between a lower critical size ratio and a upper one, the anomalous diffusion occurs purely due to the molecular crowding. Further analysis indicates that the physical origin of subdiffusion is the "cage effect". Moreover, the subdiffusion exponent α decreases with the increasing medium viscosity and the degree of crowding, and gets a minimum αmin=0.75 at δ=1. At long time scales, normal diffusion of a tracer is recovered. For δ≤1, the relative mobility of tracers is independent of the degree of crowding. Meanwhile, it is sensitive to the degree of crowding for δ>1. Our results are helpful in deepening the understanding of the diffusive properties of biomacromolecules that lie within crowded intracellular environments, such as proteins, DNA and ribosomes.  相似文献   
68.
This study of the dynamic compressive strength properties of metal foams is in two parts. Part I presents data from an extensive experimental study of closed-cell Hydro/Cymat aluminium foam, which elucidates a number of key issues and phenomena. Part II focuses on modelling issues.The dynamic compressive response of the foam was investigated using a direct-impact technique for a range of velocities from 10 to . Elastic wave dispersion and attenuation in the pressure bar was corrected using a deconvolution technique.A new method of locating the point of densification in the nominal stress-strain curves of the foam is proposed, which provides a consistent framework for the definition of the plateau stress and the densification strain, both essential parameters of the ‘shock’ model in Part II. Data for the uniaxial, plastic collapse and plateau stresses are presented for two different average cell sizes of approximately 4 and 14 mm. They show that the plastic collapse strength of the foam changes significantly with compression rate. This phenomenon is discussed, and the distinctive roles of microinertia and ‘shock’ formation are described. The effects of compression rates on the initiation, development and distribution of cell crushing are also examined. Tests were carried out to examine the effects of density gradient and specimen gauge length at different rates of compression and the results are discussed. The origin of the conflicting conclusions in the literature on the correlation between nominal strain rate (ratio of the impact velocity Vi to the initial gauge length lo of the specimen) and the dynamic strength of aluminium alloy foams is identified and explained.  相似文献   
69.
The indentation of single crystals by a periodic array of flat rigid contacts is analyzed using discrete dislocation plasticity. Plane strain analyses are carried out with the dislocations all of edge character and modeled as line singularities in a linear elastic solid. The limiting cases of frictionless and perfectly sticking contacts are considered. The effects of contact size, dislocation source density, and dislocation obstacle density and strength on the evolution of the mean indentation pressure are explored, but the main focus is on contrasting the response of crystals having dislocation sources on the surface with that of crystals having dislocation sources in the bulk. When there are only bulk sources, the mean contact pressure for sufficiently large contacts is independent of the friction condition, whereas for sufficiently small contact sizes, there is a significant dependence on the friction condition. When there are only surface dislocation sources the mean contact pressure increases much more rapidly with indentation depth than when bulk sources are present and the mean contact pressure is very sensitive to the strength of the obstacles to dislocation glide. Also, on unloading a layer of tensile residual stress develops when surface dislocation sources dominate.  相似文献   
70.
基于定量构效关系设计自乳化系统   总被引:1,自引:0,他引:1  
将定量构效关系引入到自乳化系统中, 采用HF/6-31G*方法优化分子结构, 在此基础上计算出组分的量子化学参数, 考察组分含量、立体效应、疏水效应、静电效应对自乳化体系的微乳区域面积和粒径的影响, 通过多元线性回归建立了分子结构参数和组分比例与体系的微乳区域面积/粒径间的定量函数模型, 并对模型外的组分组成的测试集进行了预测. 研究结果表明: 乳化剂与助乳化剂的用量比是影响自乳化体系相行为的主要因素, 油相和助乳化剂含量增大, 粒径增加, 乳化剂含量增大, 粒径减小; 而组分间的相互作用力对系统性质影响较小. 除以肉豆蔻酸异丙酯(IPM)为油相建立的模型外, 其余模型均具有较好的预测效果, 利用这些规律可为自乳化系统的组分筛选提供理论指导, 提高实验效率.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号