首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4538篇
  免费   965篇
  国内免费   382篇
化学   1009篇
晶体学   31篇
力学   895篇
综合类   4篇
数学   1378篇
物理学   2568篇
  2024年   1篇
  2023年   162篇
  2022年   138篇
  2021年   190篇
  2020年   234篇
  2019年   126篇
  2018年   116篇
  2017年   185篇
  2016年   187篇
  2015年   236篇
  2014年   320篇
  2013年   346篇
  2012年   532篇
  2011年   472篇
  2010年   380篇
  2009年   347篇
  2008年   280篇
  2007年   229篇
  2006年   224篇
  2005年   184篇
  2004年   173篇
  2003年   125篇
  2002年   144篇
  2001年   114篇
  2000年   83篇
  1999年   114篇
  1998年   67篇
  1997年   40篇
  1996年   37篇
  1995年   32篇
  1994年   30篇
  1993年   10篇
  1992年   8篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1971年   1篇
  1957年   2篇
排序方式: 共有5885条查询结果,搜索用时 18 毫秒
61.
Two novel unsymmetrical Ir(III) complexes [Ir(ppy)2(N N)Cl2] (N N=2-(pyrazin-2-yl)naphtha[1,2-e][1,2,4]triazine, Ir1 ; 2-(pyrazin-2-yl)-4b,4b’-dihydroaceanthryleno[1,2-e][1,2,4]triazine, Ir2 ) were developed as chemotherapy agents. Ir1 was mainly located in mitochondria. In contrast, Ir2 accumulated in mitochondria but subsequently migrated to the nucleus. Ir1 and Ir2 showed cytotoxicity toward cancerous cells, especially the cisplatin-resistant ones, indicating their ability to overcome cisplatin resistance. Although both Ir1 and Ir2 disrupted mitochondrial metabolism, they showed different cell death mechanisms. Ir1 induced mitochondria-mediated apoptosis in cisplatin-resistant A549R cells. Ir2 was demonstrated to cause PARP-1 activated necroptosis in A549R cells. This study provides an experimental basis for the rational design of metal-based chemotherapeutic drugs.  相似文献   
62.
针对羰基铁粉吸收剂在温度较高时易被氧化的问题,采用水热法制备了氧化锌包覆羰基铁粉核壳结构复合粒子,并分别将羰基铁粉和氧化锌/羰基铁粉核壳粒子与石蜡混合,制备复合材料。结果表明,氧化锌纳米棒致密的包覆在羰基铁粉颗粒表面形成海胆状核壳结构复合粒子,正是这种结构将羰基铁粉颗粒与空气隔绝,使得复合粒子的抗氧化性能得到显著改善。与羰基铁粉复合吸波材料相比,氧化锌/羰基铁粉核壳粒子的复合材料吸收峰稍向低频移动,反射损耗小于-5 d B的带宽几乎保持不变,在不改变电磁吸波性能的前提下,提高了羰基铁粉粒子的使用温度。  相似文献   
63.
Samples of copper-deficient CaCu3Ti4O12 (CCTO) compared to the nominal composition, all synthesized via organic gel-assisted citrate process, show huge change of grain boundaries capacitance as deduced from a fit of an RC element model to the impedance spectroscopic data. The grain boundary capacitance is found to scale with the permittivity measured at 1 kHz weighted by the size of the grains. This result is found consistent with the internal barrier layer capacitance (IBLC) model.  相似文献   
64.
N-acetyl-3,3-dinitroazetidine (ADNAZ) is an important precursor for synthesizing new multinitroazetidine energetic compounds. Its thermal behaviour was studied under a non-isothermal condition by DSC and TG/DTG methods, the results show that there are one melting process and one endothermic decomposition process. The specific molar heat capacity (Cp,m) of ADNAZ was determined by a continuous Cp mode of micro-calorimeter and theoretical calculation, and the Cp,m of ADNAZ was 240.37 J · K−1 · mol−1 at T = 298.15 K. The detonation velocity (D) and detonation pressure (P) of ADNAZ were estimated using the nitrogen equivalent equation according to the experimental density, the value of D and P are (6685.83 ± 3.12) m · s−1 and (18.36 ± 0.02) GPa, respectively. The free radical signals of ADNAZ were detected by electron spin resonance (ESR) technique, which is used to estimate its sensitivity.  相似文献   
65.
对于场线耦合问题,经典传输线理论不适用于求解高频电磁干扰辐照下传输线负载上的电压和电流响应。针对这一问题,首先介绍了一种基于天线理论和模拟行为建模(ABM)的时域全波建模方法。该方法利用Harrington矩量法将电流积分方程离散并推导得到宏模型时域表达式,然后利用ABM频域功能实现频变参数的傅里叶逆变换和时域卷积计算。利用电路求解器,该建模方法可直接求解任意结构传输线耦合的负载处瞬态响应;与传统全波算法相比,模型一旦建立便可应用于任意入射场和线性/非线性负载的情况,无需重复耗时地求解电流积分方程。该方法可简化全波算法求解过程,提高仿真计算效率,尤其便于在入射场和负载存在不确定参数时进行高效重复抽样计算以获得统计特性。然后以高频电磁干扰耦合有损大地上的双导体传输线为例,通过与数值电磁代码和传统传输线理论方法的求解结果对比,验证了所提宏模型的有效性以及传输线理论在解决场线耦合问题时的局限性。结果表明,基于全波方法构建的宏模型可在时域内高效准确地求解高频电磁干扰辐照下任意形状传输线负载上的瞬态响应。  相似文献   
66.
Ultrasound has been proven to enhance the mass transfer process and impact the fabrication of anodic aluminum oxide (AAO). However, the different effects of ultrasound propagating in different media make the specific target and process of ultrasound in AAO remain unclear, and the effects of ultrasound on AAO reported in previous studies are contradictory. These uncertainties have greatly limited the application of ultrasonic-assisted anodization (UAA) in practice. In this study, the bubble desorption and mass transfer enhancement effects were decoupled based on an anodizing system with focused ultrasound, such that the dual effects of ultrasound on different targets were distinguished. The results showed that ultrasound has the dual effects on AAO fabrication. Specifically, ultrasound focused on the anode has a nanopore-expansion effect on AAO, leading to a 12.24 % improvement in fabrication efficiency. This was attributed to the promotion of interfacial ion migration through ultrasonic-induced high-frequency vibrational bubble desorption. However, AAO nanopores were observed to shrink when ultrasound was focused on the electrolyte, accompanied by a 25.85 % reduction in fabrication efficiency. The effects of ultrasound on mass transfer through jet cavitation appeared to be the reason for this phenomenon. This study resolved the paradoxical phenomena of UAA in previous studies and is expected to guide AAO application in electrochemistry and surface treatments.  相似文献   
67.
Larger ethers such as diethyl ether (DEE) and di-n-propyl ether (DPE) have different oxidation behavior (double-NTC behavior) compared to the simplest dimethyl ether (DME). Such phenomena are interpreted with different reactions and processes in different ether kinetic models, which also predict different formation pathways of oxidation intermediates such as acids. To gain further insights into the oxidation kinetics of linear ethers, ethyl methyl ether (EME), which has a nonsymmetrical structure, was studied in this work. Oxidation experiments of 1% of EME were performed in a jet-stirred reactor at 1 atm, a residence time of 2 s, an equivalence ratio of 1, and over a temperature range of 375–850 K. The intermediates were analyzed with photoionization molecular-beam mass spectrometry. To explain the oxidation behavior of EME, a detailed kinetic model was also constructed. The oxidation of EME spans a wider temperature range than DME, but no obvious double-NTC behavior was observed as DEE. Based on the model analysis and profiles of critical intermediates such as ketohydroperoxides (KHPs) and CH3O2H, the low-temperature oxidation behavior of EME was explained by the chain-branching reactions of the fuel itself and the oxidation intermediates. Abundant species such as aldehydes, acids, esters, and fuel-specific dione species were detected and could be well reproduced by the current model. In particular, acids are produced by the decomposition of KHPs and subsequent reactions of the intermediate CH3CHO. Esters and dione species are mainly formed via fuel-related pathways.  相似文献   
68.
《中国化学快报》2022,33(4):2101-2104
Exosomal microRNA (miRNA) is an ideal candidate of noninvasive biomarker for the early diagnosis of cancer. Sensitive and accurate sensing of abnormal exosomal miRNA plays essential role for clinical promotion due to its close correlation with tumor proliferation and progression. Herein, a microfluidic surface-enhanced Raman scattering (SERS) sensor was proposed for an on-line detection of exosomal miRNA based on rolling circle amplification (RCA) and tyramine signal amplification (TSA) strategy. The microfluidic chip consists of a magnetic enrichment chamber, a serpentine fluidic mixer and a plasmonic SERS substrate functionalized with capture probes. The released miRNA activates the capture probe, triggers RCA reaction, and generates a large number of single-stranded DNA products to drive the catalysis of nanotags deposition via TSA, producing numerous “hot spots” to enhance the SERS signals. In merit of the microfluidics chip and nucleic acid-tyramine cascade amplification, the developed SERS sensor significantly improves the sensitivity for the exosomal miRNA assay, resulting in a limit of detection (LOD) as low as 1 pmol/L and can be successfully applied in the analysis of exosomes secreted from breast tumor cells, which demonstrates the potential utility in practical applications.  相似文献   
69.
《中国化学快报》2022,33(8):3726-3732
As a common volatile organic compound, benzene (C6H6) exists in home decoration pollution gas widely, which causes great harm to the environment and human health. Therefore, it is necessary to rationally design advanced materials with high selectivity to detect and capture C6H6. Herein, combined with the d-band center theory and cohesive energy, a new two-dimensional metal-organic framework material, Ni-doped hexaaminobenzene-based coordination polymer (Ni-HAB-CP) is designed, and its application potential as a C6H6 sensor are systematically investigated by using first principles calculation. The result shows that Ni-HAB-CP has a strong adsorption for C6H6 without any additional method. In addition, Ni-HAB-CP can maintain good conductivity before and after adsorption, and C6H6 can be easily desorbed from the surface of Ni-HAB-CP by charge control. Moreover, the I-V curve calculated by Atomistix Toolkit (ATK) reveals that Ni-HAB-CP has high sensitivity and selectivity to C6H6. Hence, Ni-HAB-CP is expected to be used as a potential material for a highly efficient and recyclable C6H6 sensor in the future. The calculation and analysis methods used in this paper could provide a certain theoretical basis and reference for the future research of gas sensors.  相似文献   
70.
The oxygen reduction reaction in direct glycol fuel cells heavily relies on noble metal-based electrocatalysts. In this work, novel Pt group metal-free catalysts based on porous Fe-N-C materials are successfully synthesized as catalysts with high activity and durability for the cathode oxygen reduction reaction (ORR). Through the encapsulation of NH4SCN salt, the surface elements and pore structure of the catalyst are effectively changed, and the active sites of Fe effectively are increased. The half-wave potential of the best Fe-N-C catalyst was –0.02 V vs. Hg/HgO in an alkaline environment. The porous Fe-N-C catalyst possesses a large specific surface area(1158 m2/g) and shows good activity and tolerance to glycol. The direct glycol fuel cell with the Fe-N-C cathode achieved a maximum power density of 62.2 mW/cm2 with 4 mol/L KOH and 4 mol/L glycol solution at 25 °C and maintained discharge for more than 250 h at a 50 A/cm2 current density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号