首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   12篇
  国内免费   2篇
力学   16篇
数学   19篇
物理学   14篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2015年   1篇
  2014年   4篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
排序方式: 共有49条查询结果,搜索用时 281 毫秒
41.
从理论上研究了上随体Maxwell流体在滑移流区的动量传输问题.通过一系列相似变换把控制方程组转化为常微分方程组,利用同伦分析法首次求得了问题的近似解析解. 获得的同伦解析解与文献中的数值解吻合较好. 利用同伦解分析讨论了滑移参数、磁场强度、速度比例参数、吸入喷住参数和流体黏弹性参数对流动的影响.   相似文献   
42.
This paper is concerned with two-dimensional stagnation-point steady flow of an incompressible viscous fluid towards a stretching sheet whose velocity is proportional to the distance from the slit. The governing system of partial differential equations is first transformed into a system of dimensionless ordinary differential equations. Analytical solutions of the velocity distribution and dimensionless temperature profiles are obtained for different ratios of free stream velocity and stretching velocity, Prandtl number, Eckert number and dimensionality index in series forms using homotopy analysis method(HAM). It is shown that a boundary layer is formed when the free stream velocity exceeds the stretching velocity, and an inverted boundary layer is formed when the free stream velocity is less than the stretching velocity. Graphs are presented to show the effects of different parameters.  相似文献   
43.
The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.  相似文献   
44.
An incompressible flow in a porous channel with expanding or contacting walls in the presence of a transverse magnetic field is considered. Using similarity transformations, the governing equations are reduced to the nonlinear ordinary differential equations. The exact similar solutions for the different cases of the expansion ratio and the Hartmann number are obtained with a singular perturbation method, and the associated behavior is discussed in detail.  相似文献   
45.
The problem of magnetohydrodynamic (MHD) flow on a moving surface with the power-law velocity and special injection/blowing is investigated. A scaling group transformation is used to reduce the governing equations to a system of ordinary differen- tial equations. The skin friction coefficients of the MHD boundary layer flow are derived, and the approximate solutions of the flow characteristics are obtained with the homotopy analysis method (HAM). The approximate solutions are easily computed by use of a high order iterative procedure, and the effects of the power-law index, the magnetic parameter, and the special suction/blowing parameter on the dynamics are analyzed. The obtained results are compared with the numerical results published in the literature, verifying the reliability of the approximate solutions.  相似文献   
46.
郑连存  冯志丰  张欣欣 《物理学报》2007,56(3):1549-1554
从理论上研究了一类广义扩散方程的求解问题. 利用相似变换和解析拆分技巧给出了求解该类非线性微分方程近似解的一种有效方法, 方程的解可以表示为一个收敛的幂级数. 近似解结果和数值结果非常符合,证明了所提出的方法的准确性和可靠性, 该方法可以用于解决其他科学和工程技术问题. 关键词: 广义扩散方程 非线性边界值问题 解析拆分 近似解析解  相似文献   
47.
Yun-Xian Pei 《中国物理 B》2022,31(6):64402-064402
We study the coupled flow and heat transfer of power-law nanofluids on a non-isothermal rough rotating disk subjected to a magnetic field. The problem is formulated in terms of specified curvilinear orthogonal coordinate system. An improved BVP4C algorithm is proposed, and numerical solutions are obtained. The influence of volume fraction, types and shapes of nanoparticles, magnetic field and power-law index on the flow, and heat transfer behavior are discussed. The obtained results show that the power-law exponents (PLE), nanoparticle volume fraction (NVF), and magnetic field inclination angle (MFIA) have almost no effects on velocities in the wave surface direction, but have small or significant effects on the azimuth direction. The NVF has remarkable influences on local Nusselt number (LNN) and friction coefficients (FC) in the radial direction and the azimuth direction (AD). The LNN increases with NVF increasing while FC in AD decreases. The types of nanoparticles, magnetic field strength, and inclination have small effects on LNN, but they have remarkable influences on the friction coefficients with positively correlated heat transfer rate, while the inclination is negatively correlated with heat transfer rate. The size of the nanoparticle shape factor is positively correlated with LNN.  相似文献   
48.
We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eolution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0 〈 n 〈 0.1. However, for n 〉 0.5, the Nusselt number decreases monotonically with the increasing n, and for n 〉 20, the values of Nusselt number approach a constant.  相似文献   
49.
Diffusion in narrow curved channels with dead-ends as in extracellular space in the biological tissues, e.g., brain, tumors, muscles, etc. is a geometrically induced complex diffusion and is relevant to different kinds of biological, physical, and chemical systems. In this paper, we study the effects of geometry and confinement on the diffusion process in an elliptical comb-like structure and analyze its statistical properties. The ellipse domain whose boundary has the polar equation $\rho \left( \theta \right)=\frac{b}{\sqrt {1-e^{2}\cos^{2}\theta } }$ with $0相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号