首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   134篇
  国内免费   70篇
化学   416篇
晶体学   11篇
力学   2篇
物理学   60篇
  2024年   1篇
  2023年   8篇
  2022年   32篇
  2021年   27篇
  2020年   69篇
  2019年   39篇
  2018年   47篇
  2017年   28篇
  2016年   56篇
  2015年   42篇
  2014年   38篇
  2013年   33篇
  2012年   23篇
  2011年   14篇
  2010年   10篇
  2009年   8篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
41.
《中国化学快报》2020,31(9):2305-2308
MXene materials have recently attracted considerable attention in energy storage application owing to their metallic conductivity, 2D structure and tunable surface terminations. However, the restacking of 2D MXene nanosheets hinders the ion transport and accessibility to the surface, resulting in adverse effect on their electrochemical performances. Here, with the assistance of hexamethylenetetramine (C6H12N4), 2D Ti3C2Tx MXene nanosheets were fabricated into a 3D architecture with crumbled and porous structure through an electrostatic self-assembly followed by annealing. The resultant 3D structure can expose massive active sites and facilitates the ion transport, which is beneficial for sufficient utilization of the outstanding superiorities of the MXene. Therefore, as a pseudocapacitive material, the 3D crumpled and porous Ti3C2Tx MXene shows a gravimetric capacitance of 333 F/g at 1 A/g, and maintains 261 F/g and 132 F/g at ultrahigh current densities of 100 A/g and 1000 A/g, respectively, revealing promising potential for application in supercapacitors.  相似文献   
42.
We studied sensor application of a graphene oxide and hematite (α‐Fe2O3/GO) composite electrode well‐characterized by the SEM and XRD. Through differential pulse voltammetry (DPV), oxidation of dexamethasone sodium phosphate (DSP) was studied at the surface of a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) and the α‐Fe2O3/GO composite. The values of the transfer coefficient (α) and the diffusion coefficient (D) of DSP were 0.5961 and 4.71×10?5 cm2 s?1 respectively. In the linear range of 0.1–50 μM, the detection limit (DL) was 0.076 μM. In the second step, a GCE was modified with α‐Fe2O3/GO composite and the DSP measurement step was repeated to analyzed and compare the effects of hematite nanoparticles present on graphene oxide surfaces. According to the results, α and D were 0.52 and 2.406×10?4 cm2 s?1 respectively and the DL was 0.046 μM in the linear range of 0.1–10.0 μM. The sensor is simple, inexpensive and uses blood serum.  相似文献   
43.
Covalent organic frameworks (COFs) are highly modular porous crystalline polymers that are of interest for applications such as charge‐storage devices, nanofiltration membranes, and optoelectronic devices. COFs are typically synthesized as microcrystalline powders, which limits their performance in these applications, and their limited solubility precludes large‐scale processing into more useful morphologies and devices. We report a general, scalable method to exfoliate two‐dimensional imine‐linked COF powders by temporarily protonating their linkages. The resulting suspensions were cast into continuous crystalline COF films up to 10 cm in diameter, with thicknesses ranging from 50 nm to 20 μm depending on the suspension composition, concentration, and casting protocol. Furthermore, we demonstrate that the film fabrication process proceeds through a partial depolymerization/repolymerization mechanism, providing mechanically robust films that can be easily separated from their substrates.  相似文献   
44.
Weak van der Waals interactions between interlayers of two‐dimensional layered materials result in disabled across‐interlayer electron transfer and poor layered structural stability, seriously deteriorating their performance in energy applications. Herein, we propose a novel covalent assembly strategy for MoS2 nanosheets to realize unique MoS2/SnS hollow superassemblies (HSs) by using SnS nanodots as covalent linkages. The covalent assembly based on all‐inorganic and carbon‐free concept enables effective across‐interlayer electron transfer, facilitated ion diffusion kinetics, and outstanding mechanical stability, which are evidenced by experimental characterization, DFT calculations, and mechanical simulations. Consequently, the MoS2/SnS HSs exhibit superb rate performance and long cycling stability in lithium‐ion batteries, representing the best comprehensive performance in carbon‐free MoS2‐based anodes to date. Moreover, the MoS2/SnS HSs also show excellent sodium storage performance in sodium‐ion batteries.  相似文献   
45.
46.
Two‐dimensional graphene–CdS (G–CdS) semiconductor hybrid nanosheets were synthesized in situ by graphene oxide (GO) quantum wells and a metal–xanthate precursor through a one‐step growth process. Incorporation of G–CdS nanosheets into a photoactive film consisting of poly[4,8‐bis‐(2‐ethyl‐hexyl‐thiophene‐5‐yl)‐benzo[1,2‐b:4,5‐b]dithiophene‐2,6‐diyl]‐alt‐[2‐(2‐ethyl‐hexanoyl)‐thieno[3,4‐b]thiophen‐4,6‐diyl] (PBDTTT‐C‐T) and [6,6]‐phenyl C70 butyric acid methyl ester (PC70BM) effectively decreases the exciton lifetime to accelerate exciton dissociation. More importantly, the decreasing energy levels of PBDTTT‐C‐T, PC70BM, and G–CdS produces versatile heterojunction interfaces of PBDTTT‐C‐T:PC70BM, PBDTTT‐C‐T:G–CdS, and PBDTTT‐C‐T:PC70BM:G–CdS; this offers multi‐charge‐transfer channels for more efficient charge separation and transfer. The charge transfer in the blend film also depends on the G–CdS nanosheet loadings. In addition, G–CdS nanosheets improve light utilization and charge mobility in the photoactive layer. As a result, by incorporation of G–CdS nanosheets into the active layer, the power‐conversion efficiency of inverted solar cells based on PBDTTT‐C‐T and PC71BM is improved from 6.0 % for a reference device without G–CdS nanosheets to 7.5 % for the device with 1.5wt % G–CdS nanosheets, due to the dramatically enhanced short‐circuit current. Combined with the advantageous mechanical properties of the PBDTTT‐C‐T:PC70BM:G–CdS active layer, the novel CdS‐cluster‐decorated graphene hybrid nanomaterials provide a promising approach to improve the device performance.  相似文献   
47.
A colloidal suspension of exfoliated, layered cobalt oxide nanosheets has been synthesized through the intercalation of quaternary tetramethylammonium ions into protonated lithium cobalt oxide. According to atomic force microscopy, exfoliated nanosheets of layered cobalt oxide show a plateau‐like height profile with nanometer‐level height, underscoring the formation of unilamellar 2D nanosheets. The exfoliation of layered cobalt oxide was cross‐confirmed by X‐ray diffraction, UV/Vis spectroscopy, and transmission electron microscopy. The maintenance of the hexagonal in‐plane structure of the cobalt oxide lattice after the exfoliation process was evidenced by selected‐area electron diffraction and Co K‐edge X‐ray absorption near‐edge structure analysis. The zeta‐potential measurements clearly demonstrated the negative surface charge of cobalt oxide nanosheets. Adopting the nanosheets of layered cobalt oxide as a precursor, we were able to prepare the monodisperse CoO nanocrystals with a particle size of ≈10 nm as well as the heterolayered film composed of cobalt oxide monolayer and polycation.  相似文献   
48.
A chemically converted graphene/epoxy (EP) resin nanocomposite has been developed through the use of the functionalized graphene nanosheets (FGNs). The FGNs were prepared via the reaction of amines with alkylcarboxyl groups attached to the graphite oxides in the course of a dicarboxylic acid acyl peroxide treatment. FGNs/EP composites were prepared by dissolving the FGNs in organic solvent followed by mixing with EP and curing agent. In this composite, the FGNs were able to create molecular entanglement with EP matrix by taking advantage of the reactions between amine groups of FGNs and EP groups of EP, thus the FGNs could be covalently integrated into the EP matrix and became part of the cross‐linked network structure rather than just a separated component. Great enhancement in the mechanical properties of the epoxy composite, such as the ultimate tensile strength and toughness, had been achieved with small loading (0.1 wt%) of FGNs by 17.0% and 262.2%, respectively. However, the FGNs reinforced EP composites showed a slight decrease in glass transition temperature (Tg). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
49.
《Electroanalysis》2017,29(9):2027-2035
The ultra‐wide two dimensional Bi2S3 nanosheets (2D Bi2S3 Ns) as non‐toxic graphene‐like nanomaterials have been prepared through solvothermal decomposition of a single‐source precursor, Bi(S2CNEt2)3, in ethylenediamine media for 2 h in 180 °C. The morphology, structure, properties and catalytic activity of prepared 2D Bi2S3 Ns were characterized with XRD, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV‐Visible spectroscopy, cyclic voltammetry (CV), amperometry, electrochemical charge/discharge technique and electrochemical impedance spectroscopy (EIS). The SEM image showed the 2D Bi2S3 Ns with a thickness of 15±4 nm and lengths of several micrometers is synthesized. The UV−Vis spectrum of 2D Bi2S3 Ns showed high sensitivity to visible‐near infrared light with its direct energy band gap of ≈1.22 eV. These Bi2S3 Ns showed high electron transfer ability and good electrochemical behavior and also exhibited electro‐catalytic activity toward the reduction‐oxidation of hydrogen peroxide. It is found that Bi2S3 Ns could detect H2O2 at wide linear concentration range (50.0 μM–8.0 mM) with detection limit 8 μM, using amperometry as measuring technique. Also the synthesized Bi2S3 Ns exhibited excellent electrochemical H2 storage properties. As a result, based on above properties, the Bi2S3 Ns can be used as a valuable and useful nanomaterial for H2 storage, high‐energy batteries, electrocatalytic fields and electrochemical sensing.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号