首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   733篇
  免费   74篇
  国内免费   208篇
化学   555篇
晶体学   21篇
力学   156篇
综合类   18篇
数学   110篇
物理学   155篇
  2024年   5篇
  2023年   15篇
  2022年   21篇
  2021年   22篇
  2020年   11篇
  2019年   12篇
  2018年   10篇
  2017年   16篇
  2016年   22篇
  2015年   26篇
  2014年   54篇
  2013年   49篇
  2012年   65篇
  2011年   42篇
  2010年   48篇
  2009年   55篇
  2008年   62篇
  2007年   40篇
  2006年   58篇
  2005年   47篇
  2004年   37篇
  2003年   33篇
  2002年   20篇
  2001年   21篇
  2000年   22篇
  1999年   24篇
  1998年   27篇
  1997年   16篇
  1996年   18篇
  1995年   19篇
  1994年   25篇
  1993年   16篇
  1992年   18篇
  1991年   14篇
  1990年   10篇
  1989年   9篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1015条查询结果,搜索用时 93 毫秒
31.
应用宽分布校正法对凝胶渗透色谱(GPC)进行了校正,将校正曲线用于聚丙烯腈(PAN)共聚物分子量的计算。对扣除色谱峰扩展效应前后的测试结果与乌氏粘度法测得的数据进行比较。结果表明,应用宽分布校正法时,必须扣除色谱峰扩展效应,才能得到较为准确的测试结果。  相似文献   
32.
卢雁  卢泽  陈得军 《大学化学》2013,28(3):68-73
讨论了溶液渗透压的定义及不同溶质存在时理想溶液渗透压与溶质浓度的依数性关系,同时讨论了实际溶液中溶剂的活度、活度系数、渗透系数及溶液渗透压之间的关系,以及溶质间相互作用对溶液渗透压的影响。着重分析了与聚电解质具有同离子的电解质存在时产生的唐南效应对渗透压的影响。  相似文献   
33.
以石蜡和经硝酸处理过的碳纳米管(CNTs)为原料,苯为溶剂,采用真空渗透法制备了石蜡填充CNTs纳米胶囊复合材料,并设计了一个简易的热界面装置,对石蜡填充CNTs材料在电子设备热管理中的应用能力进行了测试。结果表明:石蜡成功填充到CNTs管内,且在CNTs管外基本没有残留的石蜡。在传热界面未涂抹二甲基硅油时,内外两侧最高温度的温差为4.7℃,而分别涂抹二甲基硅油、未经酸处理(20%)CNTs/二甲基硅油、酸处理后(20%)CNTs/二甲基硅油、(20%)石蜡填充CNTs/二甲基硅油时,其内外两侧最高温度的温差分别为3.8℃,3.1℃,3.1℃,2.2℃,说明将石蜡填充CNTs作为二甲基硅油中的散热填充物具有更好的散热效果,且增加了界面间的热反应速度和热稳定性。  相似文献   
34.
含氟体系中,在负载晶种的大孔莫来石支撑体表面快速合成了高性能且取向生长的T型分子筛膜。采用XRD、SEM和MASNMR等手段对分子筛膜层和粉末进行表征。讨论了添加物、氟硅比、合成温度和合成时间等条件对膜生长与分离性能的影响,并阐述了含氟体系中T型分子筛膜快速晶化的机理。碱金属氟盐的加入促进了T型分子筛晶体层的晶化速率,并对晶体层形貌产生了一定的影响。膜应用于75℃、水/异丙醇(10:90,w/w)体系的平均渗透通量和分离因子分别为(4.91±0.18)kg·m-2·h-1和7060±1130。  相似文献   
35.
建立了凝胶渗透色谱-固相萃取/高效液相色谱法测定水产品中甲基睾酮和己烯雌酚的分析方法。样品经乙醚超声提取和漩涡振荡后以乙酸乙酯-环己烷(1∶1)为流动相进行凝胶渗透色谱净化,再过HLB柱进一步净化,以甲醇-水(72∶28)为流动相,采用高效液相色谱/紫外检测器在254 nm波长下测定,外标法定量。结果显示甲基睾酮和己烯雌酚在0.02~2.0 mg/L质量浓度范围内呈良好的线性关系,线性系数(r)均大于0.999。空白样品在10.0、50.0、200μg/kg 3个加标水平下的平均回收率为84%~93%,相对标准偏差均小于6.0%。甲基睾酮和己烯雌酚的定量下限分别为6.0μg/kg和5.0μg/kg。  相似文献   
36.
《分析化学》2013,(6):935
凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(≥5μm),分辨率一般会因此而受影响。填充较小颗粒(<5μm)的色谱柱已投放市场,并能提高GPC分离速度,但分离速度会因色谱柱本身的最大工作压力偏低而受限。此外,常规GPC仪器的系统体积较大,这需要使用较大直径的色谱柱以减缓可能导致分辨率降低的系统峰展宽。沃特世ACQUITY超高效聚合物色谱(APC)系  相似文献   
37.
采用凝胶渗透净化技术,建立了用高效液相色谱串联质谱法同时测定动物源肝脏中克伦特罗、沙丁胺醇、莱克多巴胺、特步它林残留量的方法。样品经β-葡萄糖苷酸酶水解后,用乙酸铵溶液提取,MCX固相萃取柱和全自动凝胶渗透净化色谱仪净化,采用选择离子监控模式(SIM)检测,内标法定量。克伦特罗在0.1~10 ng/mL、莱克多巴胺、沙丁胺醇、特布他林在1~100 ng/mL质量浓度范围内呈良好的线性关系,相关系数(r2)均大于0.999;方法的检出限和定量限分别在0.003~0.02μg/kg和0.009~0.06μg/kg之间,方法的回收率为94.7%~106.1%,相对标准偏差小于7.8%。适用于动物肝脏中克伦特罗、沙丁胺醇、莱克多巴胺、特步它林的确认和定量检测。  相似文献   
38.
提出了水产品中甲基睾酮的超高效液相色谱-串联质谱法分析方法。样品经叔丁基甲醚提取,提取液经凝胶渗透色谱和HLB固相萃取柱净化,所得洗脱液40℃氮吹挥干后用流动相溶解,用ACQUITY UPLC BEH C18色谱柱分离,以乙腈-0.2%甲酸(40+60)溶液为流动相洗脱,采用电喷雾正离子源及多反应监测模式测定。甲基睾酮的质量浓度在0.50~100μg.L-1范围内呈线性关系,测定下限(10S/N)为0.5μg.kg-1。添加1.0,5.0,10.0μg.kg-1 3个浓度水平进行加标回收试验,回收率在87.0%~94.2%之间,测定值的相对标准偏差(n=5)均小于6%。  相似文献   
39.
研究了SrCo0.7Fe0.2Mo0.103-δ(SCFM)材料的相组成、微观结构、热膨胀系数、氧渗透性能和化学稳定性,其结果和文献中的SrCo0.8Fe0.2O3-δ(SCF)做了对比.通过EDTA-citric混合方法成功获得了纯相SCFM材料.SCFM材料在500-1050℃显示出比SCF材料更低的热膨胀系数(24×10^-6-29×10^-6/K),表明其具有一种更稳定的结构,尽管由于Mo掺杂造成其透氧率比SCF材料低,但是SCFM的透氧率仍然维持在一个较高水平.证实SCF中的Mo掺杂能够阻止晶格中的有序-无序转变,提高了其在CO2下的化学稳定性.  相似文献   
40.
使用纳米粒子进行疾病的诊断和治疗是当前研究的一个热点. 由于受到黏液层的阻碍, 纳米粒子对于黏膜上皮细胞的进入效果不佳, 从而限制了其对黏膜相关疾病的诊断和治疗. 本文设计合成了一种具有黏惰性的酸敏感纳米粒子(MSNs-pCBMA-DMMA), 可有效穿透黏液层进入黏膜上皮细胞. 首先采用溶胶-凝胶法合成了表面氨基化的介孔二氧化硅纳米粒子(MSNs-NH2), 然后通过原子转移自由基聚合法(ATRP)使两性离子羧基甜菜碱甲基丙烯酸酯(CBMA)在MSNs-NH2表面上聚合形成聚羧基甜菜碱甲基丙烯酸酯(pCBMA), 获得惰性化的粒子(MSNs-pCBMA), 最后将酸响应性分子2,3-二甲基马来酸酐(DMMA)修饰于MSNs-pCBMA表面, 制备了MSNs-pCBMA-DMMA. 场发射透射电子显微镜(TEM)、 傅里叶变换红外光谱(FTIR)、 氢核磁共振波谱(1H NMR)和纳米粒度Zeta电位测定仪等分析结果表明, 本文合成了MSNs-pCBMA-DMMA, 且粒子表面电位随pH值降低显著增加, 在pH=7.4~5.7范围内具有酸敏感能力. Transwell?小室实验表明, pCBMA的接枝提高了粒子在模拟黏液中的渗透速率, 而DMMA的修饰则进一步增强了粒子的扩散能力, 4 h内MSNs-pCBMA-DMMA的模拟黏液渗透率达到16.3%, 为MSNs-pCBMA的1.9倍, MSNs-NH2的3倍, 而以MSNs-NH2的表观渗透系数(Papp)为标准计算得到的MSNs-pCBMA-DMMA的相对表观渗透系数达到了2.96. 细胞毒性试验验证MSNs-pCBMA-DMMA粒子的生物安全性良好. 细胞摄取试验表明, 相比于其它粒子MSNs-pCBMA-DMMA能够更快的被黏膜上皮细胞摄取. 本文所构建的纳米粒子能够快速渗透黏液且易于被黏膜上皮细胞摄取, 为其应用于黏膜相关疾病的活体诊断和治疗提供了基础.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号