首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   32篇
化学   35篇
物理学   15篇
  2024年   1篇
  2023年   10篇
  2022年   6篇
  2021年   8篇
  2020年   8篇
  2019年   11篇
  2018年   4篇
  2016年   1篇
  2015年   1篇
排序方式: 共有50条查询结果,搜索用时 62 毫秒
31.
李翼  徐明华 《化学学报》2021,79(11):1345-1359
手性胺类化合物广泛存在于天然产物、药物分子和多功能材料中, 而且作为重要中间体、催化剂和手性辅剂在有机合成中也有广泛的应用, 因此, 发展高效的方法合成各种手性胺化合物及相应的骨架结构具有重要的科学意义和应用价值. 有机硼试剂、胺和羰基化合物参与的不对称Petasis三组分反应是构建手性胺及其衍生物最简洁、高效的方法之一. 近年来, 利用该策略来构建手性胺类化合物引起了广泛的关注. 文章综述了不对称Petasis反应合成手性胺类化合物的近期研究进展, 主要包括手性胺源、手性羰基化合物和手性硼试剂参与的底物诱导的不对称Petasis反应, 以及手性催化剂促进的不对称Petasis反应, 并对该领域的挑战和未来发展方向进行简要讨论.  相似文献   
32.
本文利用程序升温脱附技术研究了氧空位浓度对甲基基团和CO在R-TiO2(110)表面吸附的影响. 结果表明,随着氧空位浓度的变化,吸附在桥氧位的甲基基团和吸附在五配位Ti4+位点上的CO分子的脱附温度呈现了不同的趋势,揭示了表面缺陷可能对R-TiO2(110)不同位点上的物质吸附具有重要影响.  相似文献   
33.
团簇在能源催化和大气雾霾等诸多化学过程中广泛存在,团簇表征与性能研究对诠释化学反应机理至关重要. 然而,中性团簇由于缺乏电荷、难于探测,实验研究非常困难. 鉴于上述情况,发展了基于极紫外自由电子激光的中性团簇红外光谱实验方法,用于质量选择中性团簇的高灵敏探测、结构表征和性能研究. 红外-极紫外衰减和红外+极紫外增强光谱实验方法已被应用于一些中性水团簇和一些中性金属羰基化合物的研究. 由于极紫外自由电子激光的波长范围涵盖了绝大多数中性团簇的第一电离势,这一独特的实验方法为开展各类中性团簇红外谱学和结构的研究打开了大门. 本文综述了这些红外光谱实验方法及其在中性团簇研究中的应用.  相似文献   
34.
唐君  郭凯珠  陈文东  宋培培  封顺  胡巢凤  许瑞莲  田瑞军 《色谱》2016,34(12):1264-1270
建立了基于Fe_3O_4/乙二胺四乙酸(EDTA)磁性粒子的集成化蛋白质组学研究方法。首先用共沉淀法合成EDTA负载的Fe_3O_4/EDTA磁性粒子。在优化的溶液条件下(95%乙腈-1%三氟乙酸,体积分数),100μg Fe_3O_4/EDTA磁性粒子可吸附12.4μg牛血清白蛋白(BSA),吸附容量是商品化磁珠的10倍左右。以BSA作为标准蛋白质,对所合成的Fe_3O_4/EDTA磁性粒子作为蛋白质组学反应器的酶解时间进行了优化,发现Fe_3O_4/EDTA磁性粒子处理BSA酶解1、8和16 h的肽段序列覆盖率和特征肽段结果相当。因此,可以将复杂的蛋白质样品前处理时间缩短至2 h内。最后,将所合成的Fe_3O_4/EDTA磁性粒子应用于血清的蛋白质组学研究,成功地鉴定出218种蛋白质,其中包含了41种美国食品药品管理局(FDA)认证的生物标志物。所发展的基于Fe_3O_4/EDTA磁性粒子的蛋白质组学样品前处理方法将蛋白质样品预富集、还原、烷基化、酶解、多肽除盐和洗脱等步骤集成到一起,减少了样品转移和处理所造成的损失。这种技术具有快速、灵敏和易于操作的特点,可用于临床蛋白质组学研究。  相似文献   
35.
黄国保  蒋伟 《化学进展》2015,27(6):744-754
本文详细综述了有机模板协助而形成的动态共价大环。有机模板具有比金属离子更大的尺寸,因此可以诱导形成具有较大尺寸的大环结构。同时,有机模板结构具有多样性,可以通过化学反应进行按需修饰。可逆共价键有很多种,在模板诱导下形成大环结构的主要有三类:硫硫键、硼酸酯和希夫碱。硫硫键和硼酸酯的动态可逆性可以通过改变外界条件来开关。而希夫碱则可以通过还原转化为动力学稳定的共价键。因此,这类模板诱导而形成的热力学稳定大环可以转化为相应的动力学稳定大环,为大环主体的合成提供了一个新的途径。此外,动态共价大环的主客体键合模块还可以被用来构建更加复杂的超分子结构,例如轮烷和锁烃等。  相似文献   
36.
本文利用交叉分子束方法和离子速度成像技术,对H+HD→H_2+D反应在1.17 eV碰撞能下的态-态反应动力学开展了高分辨实验研究.实验采用1+1'(真空紫外+紫外)近阈值激光电离方式对反应中的D原子产物进行探测,获得了高角度分辨和高能量分辨的产物离子速度影像,进而精确获得了反应的态-态微分截面.实验观测到了H2(v'=0,j'=1)和H_2(v'=0,j'=3)振转产物角分布中与散射过程的干涉效应相联系的前向散射振荡.这一研究进一步表明了化学反应微分截面的精确测量在气相态-态反应动力学研究中的重要性.  相似文献   
37.
本文使用交叉分子束方法研究了氟原子和振动激发态氘分子D2(v=1, j=0)的反应. 使用受激拉曼抽运的方法制备了振动激发的D2分子. 实验中未观测到来自于旋轨耦合激发态氟原子F*(2P1/2)与振动激发态D2分子的贡献. 观测到来自于旋轨耦合基态氟原子F(2P3/2)和振动激发态D2的反应信号,相应的产物DF分子布居于v''=2,3,4,5振动态上. 与振动基态反应F+D2(v=1,j=0)相比,振动激发态反应F+D2(v=1,j=0)生成的DF产物转动分布更“热”. 获得了振动激发反应的四个碰撞能在0.32至2.62 kcal/mol范围内的微分反应截面. 在最低的碰撞能0.32 kcal/mol下,所有振动态的DF产物都以后向散射为主. 随着碰撞能的增加,DF产物的角分布逐渐从后向转移到侧向. 测量了DF(v''=5)产物的前向微分散射截面随碰撞能变化的曲线. 前向散射的DF(v''=5)信号出现于1.0 kcal/mol. 在2.62 kcal/mol碰撞能下DF(v''=5)主要为前向散射.  相似文献   
38.
零维有机-无机杂化金属卤化物因可调控的自陷态激子发射在发光和显示等领域具有很好的应用前景。特别是同时具有单线态和三线态激子发射双带光谱的零维金属卤化物在白光固态照明应用中极具潜力。本工作报道了两种零维杂化锑基氯化物(C24H20P)2SbCl5(Ⅰ)和(C24H20P)2SbCl5·H2O·0.5DMF(Ⅱ)(C24H20P为四苯基膦,Ph4P)。在低能量光子(如360 nm)激发下,化合物Ⅰ和Ⅱ分别呈现出由自陷态激子发射的红色和黄色的单峰宽带光谱。此外,当用高能量光子(如310 nm)激发时,Ⅱ的光谱呈现出双带白光发射,除黄光发射带外,还出现了一个源于单线态自陷激发发射的蓝光发射带。研究表明,通过引入和去除DMF和水分子,化合物Ⅰ和Ⅱ能实现可逆转化。该研究揭示了小分子对零维杂化金属卤化物晶体结构的调控机制,从而实现单带发射和...  相似文献   
39.
毛源  郑江南  封顺  田瑞军 《色谱》2021,39(10):1086-1093
分泌蛋白质是调控细胞间信号转导的重要生物大分子。由于分泌蛋白的丰度相比于胞内蛋白以及培养基添加剂更低,因此分泌蛋白的高通量鉴定是目前蛋白质组学界研究的热点和难点。目前,基于生物质谱的分泌蛋白质组学分析一般均需要从无血清的条件培养基中获得分泌蛋白质,再对其进行富集和分析。该流程操作步骤繁琐,易造成分泌蛋白质的损失和降解。本工作采用基于生物正交化学生物学技术实现对分泌蛋白质的高选择性标记和高效富集。通过结合点击化学技术,综合评估了分泌蛋白质分析中用于代谢标记的不同糖类似物。采用3种最常用的商品化糖类似物,N-叠氮乙酰甘露糖胺(ManNAz)、N-叠氮乙酰半乳糖胺(GalNAz)和N-叠氮乙酰葡萄糖胺(GlcNAz)分别对HeLa细胞进行代谢标记,之后通过炔基生物素探针对条件培养基中的分泌蛋白进行富集,结合质谱分析来对比3种糖类似物对分泌蛋白的标记效率。最后通过无标定量蛋白质组学分析,系统评估了3种糖类似物用于分泌蛋白质组分析的性能。结果表明,基于ManNAz的分泌蛋白标记方法鉴定到了282个分泌蛋白、224个细胞质膜蛋白以及846个N-糖基化位点;对分泌蛋白的富集效率分别较GalNAz和GlcNAz提高了130%和67.2%;对细胞质膜蛋白的富集效率较GalNAz和GlcNAz分别提高了273.3%和148.7%,体现出了明显的优势。本研究的实验结果为分泌蛋白高选择性富集和系统分析提供了有益的对比分析和新技术策略。  相似文献   
40.
将绿色电化学合成策略引入教学,通过电化学氧化偶联构建C―N键,实现了芳胺对位高选择性胺化,并通过循环伏安法对反应机理进行探索。此方案为科研转化的、开放性综合有机化学实验。反应以直流恒流电为电源,在室温空气条件下进行,首先以吩噻嗪和N,N-二甲基苯胺为模板底物,对电流、电量和电解质三个影响因素进行考察;确定最优条件后接着考察芳胺的适用性;最后通过循环伏安法对反应规律进行探索。实验深入融合贯穿了前沿科研成果的科学思路与创新理念,通过实验的开展,可以提升学生专业综合素质、激发学生创新意识。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号