首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10458篇
  免费   1036篇
  国内免费   718篇
化学   1505篇
晶体学   24篇
力学   705篇
综合类   128篇
数学   8234篇
物理学   1616篇
  2024年   8篇
  2023年   89篇
  2022年   100篇
  2021年   167篇
  2020年   283篇
  2019年   303篇
  2018年   274篇
  2017年   284篇
  2016年   339篇
  2015年   262篇
  2014年   484篇
  2013年   990篇
  2012年   520篇
  2011年   558篇
  2010年   487篇
  2009年   649篇
  2008年   605篇
  2007年   688篇
  2006年   613篇
  2005年   513篇
  2004年   479篇
  2003年   455篇
  2002年   443篇
  2001年   348篇
  2000年   338篇
  1999年   309篇
  1998年   256篇
  1997年   253篇
  1996年   159篇
  1995年   123篇
  1994年   108篇
  1993年   63篇
  1992年   91篇
  1991年   45篇
  1990年   49篇
  1989年   36篇
  1988年   29篇
  1987年   25篇
  1986年   32篇
  1985年   47篇
  1984年   54篇
  1983年   24篇
  1982年   40篇
  1981年   38篇
  1980年   37篇
  1979年   36篇
  1978年   18篇
  1977年   24篇
  1976年   23篇
  1974年   3篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
31.
We introduce the differential polynomial of a graph. The differential polynomial of a graph G of order n is the polynomial B(G; x) :=∑?(G)k=-nB_k(G) x~(n+k), where B_k(G) denotes the number of vertex subsets of G with differential equal to k. We state some properties of B(G;x) and its coefficients.In particular, we compute the differential polynomial for complete, empty, path, cycle, wheel and double star graphs. We also establish some relationships between B(G; x) and the differential polynomials of graphs which result by removing, adding, and subdividing an edge from G.  相似文献   
32.
We study the well‐posedness of the fractional differential equations with infinite delay on Lebesgue–Bochner spaces and Besov spaces , where A and B are closed linear operators on a Banach space X satisfying ,  and . Under suitable assumptions on the kernels a and b, we completely characterize the well‐posedness of in the above vector‐valued function spaces on by using known operator‐valued Fourier multiplier theorems. We also give concrete examples where our abstract results may be applied.  相似文献   
33.
34.
The electrochemical behavior of a number of benzoyl barbiturates was studied using a glassy carbon electrode (GCE). The kinetics of the electrode process is determined, the contribution of physical adsorption to the electrochemical process is estimated, and the mechanism of the possible electrochemical reaction is proposed. It is shown that the electrochemical reduction potentials of benzoyl phenobarbital derivatives are determined by the LUMO energies, calculated by the B3LYP 6‐311+G method. It is established that the process is quasi‐reversible, complicated by adverse reactions. The influence of halogen type and its position in the benzoyl residue of the studied substances on the analytical signal is established. The effective values of the dissociation constants of various forms of benzoyl derivatives were calculated using the example of halonal, for which the values 3.16 ? 10?8 and 6.31 ? 10?12, respectively, were found.  相似文献   
35.
Nonlinear convection–diffusion equations with nonlocal flux and possibly degenerate diffusion arise in various contexts including interacting gases, porous media flows, and collective behavior in biology. Their numerical solution by an explicit finite difference method is costly due to the necessity of discretizing a local spatial convolution for each evaluation of the convective numerical flux, and due to the disadvantageous Courant–Friedrichs–Lewy (CFL) condition incurred by the diffusion term. Based on explicit schemes for such models devised in the study of Carrillo et al. a second‐order implicit–explicit Runge–Kutta (IMEX‐RK) method can be formulated. This method avoids the restrictive time step limitation of explicit schemes since the diffusion term is handled implicitly, but entails the necessity to solve nonlinear algebraic systems in every time step. It is proven that this method is well defined. Numerical experiments illustrate that for fine discretizations it is more efficient in terms of reduction of error versus central processing unit time than the original explicit method. One of the test cases is given by a strongly degenerate parabolic, nonlocal equation modeling aggregation in study of Betancourt et al. This model can be transformed to a local partial differential equation that can be solved numerically easily to generate a reference solution for the IMEX‐RK method, but is limited to one space dimension.  相似文献   
36.
37.
38.
时间延迟扩散-波动分数阶微分方程有限差分方法   总被引:1,自引:0,他引:1  
本文提出求解时间延迟扩散-波动分数阶微分方程有限差分方法,方程中对时间的一阶导函数用α阶(0 < α < 1) Caputo分数阶导数代替.文章中利用Lubich线性多步法对分数阶微分进行差分离散,且文章利用分段区间证明该方法是稳定的,且利用数值实验加以验证.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号