首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   18篇
  国内免费   7篇
化学   15篇
晶体学   6篇
力学   1篇
综合类   2篇
物理学   22篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有46条查询结果,搜索用时 203 毫秒
21.
冯全源 《物理学报》2002,51(11):2612-2616
采用普通陶瓷工艺,进行湿压磁场成型和氧气氛烧结,同时加入微量杂质(Bi2O3和MnCO3),制备了各向异性多晶六角铁氧体材料Sr095Ca005Fe12O19.结果表明:该六角铁氧体的取向度达100%,介电损耗为23×10-3,具有非常良好的磁特性.对其比饱和磁化强度(σs)、磁晶各向异性场(Ha)与温度(T)的变化关系进行了研究,并与SrFe12O19六角铁氧体的磁特性进行了比较 关键词: 取向度 介电损耗 比饱和磁化强度 磁晶各向异性  相似文献   
22.
用固相反应合成了乌青铜型钛酸盐陶瓷BaNd2Ti4O12, 并用电化学阻抗和微波介质谐振测试表征了不同热处理和钽掺杂对电导和微波介电损耗的影响. 电导率随退火气氛(空气, 氧气和氮气)的变化与缺陷反应平衡2OO×↔2VO··+O2↑+2e'和TiTi×+e'↔Ti'Ti随氧分压的变化一致, 表明BaNd2Ti4O12具有n型导电性质. 在空气和氧气中退火有利于减少包括VO×, Ti'Ti和弱束缚电子在内的本征缺陷因而降低电导. 而在低氧分压的氮气中进行退火处理, 增加了缺陷的浓度, 同时提高了电导率. 在空气/氧气/氮气中的退火处理对微波介电损耗没有明显的影响, 表明本征缺陷对微波介电损耗的影响可以忽略. 空气退火处理样品的电导率和微波介电损耗低于空气淬火处理的样品; 其中电导的变化与缺陷反应平衡相关, 但空气退火降低微波介电损耗可能与退火消除晶格热应力有关. 五价钽的掺杂降低了电导但增大了微波介电损耗. 本研究表明空气退火处理能有效地改善BaNd2Ti4O12陶瓷的品质因子Q×f, 其值提高了约12%.  相似文献   
23.
将羰基铁和液态聚碳硅烷(LPCS)反应生成的铁(Fe)溶胶与固态聚碳硅烷(PCS)混合,合成出不同Fe质量分数的PCS先驱体,然后经氧化交联和高温热解制备了不同Fe质量分数的磁性碳化硅陶瓷(Fe/SiC),系统地研究了Fe元素的引入对SiC陶瓷的组成、结构、磁性能和介电性能的影响规律。 研究发现,当Fe质量分数小于8.94%时,在热解过程中,Fe元素可以显著促进SiCxOy的分解,生成β-SiC,且随着Fe质量分数的增加,β-SiC的结晶峰越来越强;但随着Fe质量分数继续增加,达11.78%时,则主要生成Fe3Si;Fe/SiC陶瓷均呈铁磁性,其饱和磁化强度随着Fe质量分数的增加而呈指数形式增加;当Fe质量分数为4.19%时Fe/SiC陶瓷在12.4 GHz具有最小的反射损耗,为-9.4 dB,同时低于-5 dB的带宽为2.4 GHz,Fe质量分数为8.94%时,低于-5 dB的带宽则为3.7 GHz,可用作良好的微波吸收材料。  相似文献   
24.
通过对晶体结构与压电、介电性能测试,探讨了Fe_2O_3掺杂对PMnS-PZN-PZT陶瓷压电性能的影响.结果表明,PMnS-PZN-PZT陶瓷结构位于三方、四方相共存的MPB区间,Fe_2O_3掺杂导致晶体三方、四方相结构含量发生变化.当Fe_2O_3掺杂含量为0.45 wt;时,晶体结构位于准同型相区间偏四方相结构的位置,压电与介电性能达到最佳:tanδ=0.12;,d_(33)=356 pC · N~(-1),k_p=0.60,Q_m=745,在230 ℃以下的温度范围具有很好的频率温度稳定性.  相似文献   
25.
通过分析煤粉炉飞灰中氧化物成分,利用矢量网络分析仪(VNA)测定不同氧化物含量下飞灰对微波的介电损耗。实验结果表明:30 MHz~3.2 GHz频段下,含碳量与介电损耗成正相关,且随含碳量的增加损耗程度越大,证实了微波法测碳的可行性;Fe_2O_3、MgO、Al_2O_3会影响正相关的权重,且Fe_2O_3影响最大;CaO影响甚微。  相似文献   
26.
THz波段位于微波与红外之间,该波段电磁波与物质的相互作用是一个崭新的研究领域.应用THz时域光谱技术研究了两种重要的单晶基片材料(100)MgO和(100)LaAIO3的THz光谱.在0.2—2THz频率范围,得到这两种材料在THz波段的光学参数.结果表明,在THz波段MgO基片材料的折射率n和介电系数ε不随频率的变化而变化,而LaAlO3基片材料的折射率和介电系数随着频率的增加而略有增加.在1THz频率处,测得MgO的复折射率n=3.46 i0.001,复介电系数ε=12.27 i0.06H;LaAlO3的复折射率n=4.78 i0.02,复介电系数ε=22.5 i0.2.在THz波段,LaAlO3基片的介电损耗tanδ约为MgO的5倍,且两者的介电损耗值均小于0.0l,说明MgO和LaAlO3。材料作为高温超导器件基片材料可以工作于THz波段.  相似文献   
27.
研究了不同紫外辐照时间对聚醚酰亚胺(PEI)薄膜介电性能的影响。采用FT-IR和SEM表征了PEI薄膜的分子结构和微观形貌。结果表明,紫外辐照后PEI薄膜在1742cm^(-1)处的吸收峰比原薄膜增大,说明PEI分子链中的C=O基团随辐照时间的增加而增加,并在薄膜表面产生了微裂纹。对PEI薄膜的介电性能进行的研究结果表明,随着紫外辐照时间的增加,PEI薄膜的介电常数和介电损耗增大,而表面电阻率下降,体积电阻率基本不变。并随紫外辐照时间的增加,直流击穿强度呈先增加后降低的趋势,一定辐照剂量可使薄膜发生交联反应,使击穿场强较原薄膜提高20%以上。  相似文献   
28.
A dielectric loss peak with relaxation-type characteristic is observed in Bi5TiNbWO15 over 200-400℃. The modified Cole-Cole relation by introducing relaxation strength as another important fitting parameter is used to describe this temperature-dependent behaviour of dielectric relaxation process. This peak is considered to be associated with the oxygen vacancies inside the grains and with its activation energy by relaxation determined to be 0.76eV. The obtained broadening factor α is around 0.4, which indicates a strong correlation between those relaxation units. It is confirmed that the behaviour of this peak is due to the combined effects of the dielectric relaxation and electrical conduction by the thermal motion of oxygen vacancies. These results axe further confirmed in Bi5TiNbWO15 samples through oxidization atmosphere treatment and Nd modification respectively.  相似文献   
29.
考虑到高介电常数、低介电损耗聚合物基复合材料在电气、电子行业的广泛重要应用,本文对其研究进展进行了回顾。重点讨论了功能填料、聚合物基体及它们两者的相互作用等因素对聚合物基复合材料介电性能的影响规律,试图为建立高介电常数、低介电损耗的聚合物基复合材料的设计和制备原理理清思路。指出该领域在未来的主要发展方向是涉及制备结构、形貌、尺寸可控的新的功能填料,探索新型简单的复合工艺和界面控制技术,从理论上分析建立功能填料的结构和介电性能的关系模型等。  相似文献   
30.
本文研究了在卤化银微晶沉淀过程中不同量的Ca离子掺杂对其离子电导和照相性能的影响。掺杂Ca离子使卤化银乳剂的介电损耗曲线上的吸收峰向低频方向移动。相应卤化银乳剂的感光度也有一定程度的提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号