首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   40篇
  国内免费   11篇
化学   19篇
力学   207篇
综合类   1篇
数学   232篇
物理学   60篇
  2023年   15篇
  2022年   7篇
  2021年   10篇
  2020年   13篇
  2019年   16篇
  2018年   12篇
  2017年   18篇
  2016年   19篇
  2015年   22篇
  2014年   21篇
  2013年   58篇
  2012年   16篇
  2011年   18篇
  2010年   12篇
  2009年   12篇
  2008年   19篇
  2007年   22篇
  2006年   22篇
  2005年   29篇
  2004年   26篇
  2003年   20篇
  2002年   22篇
  2001年   16篇
  2000年   12篇
  1999年   11篇
  1998年   7篇
  1997年   16篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有519条查询结果,搜索用时 15 毫秒
21.
In most of the linear homogenization problems involving convolution terms so far studied, the main tool used to derive the homogenized problem is the Laplace transform. Here we propose a direct approach enabling one to tackle both linear and nonlinear homogenization problems that involve convolution sequences without using Laplace transform. To illustrate this, we investigate in this paper the asymptotic behavior of the solutions of a Stokes–Volterra problem with rapidly oscillating coefficients describing the viscoelastic fluid flow in a fixed domain. Under the almost periodicity assumption on the coefficients of the problem, we prove that the sequence of solutions of our ?‐problem converges in L2 to a solution of a rather classical Stokes system. One important fact is that the memory disappears in the limit. To achieve our goal, we use some very recent results about the sigma‐convergence of convolution sequences. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
22.
Natural materials and structures are increasingly becoming a source of inspiration for the design novel of engineering systems. In this context, the structure of fish skin, made of an intricate arrangement of flexible plates growing out of the dermis of a majority of fish, can be of particular interest for materials such as protective layers or flexible electronics. To better understand the mechanics of these composite shells, we introduce here a general computational framework that aims at establishing a relationship between their structure and their overall mechanical response. Taking advantage of the periodicity of the scale arrangement, it is shown that a representative periodic cell can be introduced as the basic element to carry out a homogenization procedure based on the Hill-Mendel condition. The proposed procedure is applied to the specific case of the fish skin structure of the Morone saxatilis, using a computational finite element approach. Our numerical study shows that fish skin possesses a highly anisotropic response, with a softer bending stiffness in the longitudinal direction of the fish. This softer response arises from significant scale rotations during bending, which induce a stiffening of the response under large bending curvature. Interestingly, this mechanism can be suppressed or magnified by tuning the rotational stiffness of the scale-dermis attachment but is not activated in the lateral direction. These results are not only valuable to the engineering design of flexible and protective shells, but also have implications on the mechanics of fish swimming.  相似文献   
23.
Mathematical settings in which heterogeneous structures affect electron transport through a tube-shaped quantum waveguide are studied, highlighting the interaction between material composition and geometric parameters like curvature and torsion. First, the macroscopic behaviour of a nanowire made of composite fibres with microscopic periodic texture is analysed, which amounts to determining the asymptotic behaviour of the spectrum of an elliptic Dirichlet eigenvalue problem with finely oscillating coefficients in a tube with shrinking cross-section. A suitable formal expansion suggests that the effective one-dimensional limit problem is of Sturm–Liouville type and yields the explicit formula for the underlying potential. In the torsion-free case, these findings are made rigorous by performing homogenization and 3d–1d dimension reduction for the two-scale problem in a variational framework by means of Γ-convergence. Second, waveguides with non-oscillating inhomogeneities in the cross-section are investigated. This leads to explicit criteria for propagation and localization of eigenmodes.  相似文献   
24.
Discrete fine-scale models, in the form of either particle or lattice models, have been formulated successfully to simulate the behavior of quasi-brittle materials whose mechanical behavior is inherently connected to fracture processes occurring in the internal heterogeneous structure. These models tend to be intensive from the computational point of view as they adopt an “a priori” discretization anchored to the major material heterogeneities (e.g. grains in particulate materials and aggregate pieces in cementitious composites) and this hampers their use in the numerical simulations of large systems. In this work, this problem is addressed by formulating a general multiple scale computational framework based on classical asymptotic analysis and that (1) is applicable to any discrete model with rotational degrees of freedom; and (2) gives rise to an equivalent Cosserat continuum. The developed theory is applied to the upscaling of the Lattice Discrete Particle Model (LDPM), a recently formulated discrete model for concrete and other quasi-brittle materials, and the properties of the homogenized model are analyzed thoroughly in both the elastic and the inelastic regime. The analysis shows that the homogenized micropolar elastic properties are size-dependent, and they are functions of the RVE size and the size of the material heterogeneity. Furthermore, the analysis of the homogenized inelastic behavior highlights issues associated with the homogenization of fine-scale models featuring strain-softening and the related damage localization. Finally, nonlinear simulations of the RVE behavior subject to curvature components causing bending and torsional effects demonstrate, contrarily to typical Cosserat formulations, a significant coupling between the homogenized stress–strain and couple-curvature constitutive equations.  相似文献   
25.
Applied Mathematics and Mechanics - The stress and the strain should be defined as statistical variables averaged over the representative volume elements for any real continuum system. It is shown...  相似文献   
26.
Let u? be the solution of the Poisson equation in a domain perforated by thin tubes with a nonlinear Robin‐type boundary condition on the boundary of the tubes (the flux here being β(?)σ(x,u?)), and with a Dirichlet condition on the rest of the boundary of Ω. ? is a small parameter that we shall make to go to zero; it denotes the period of a grid on a plane where the tubes/cylinders have their bases; the size of the transversal section of the tubes is O(a?) with a???. A certain nonperiodicity is allowed for the distribution of the thin tubes, although the perimeter is a fixed number a. Here, is a strictly monotonic function of the second argument, and the adsorption parameter β(?) > 0 can converge toward infinity. Depending on the relations between the three parameters ?, a?, and β(?), the effective equations in volume are obtained. Among the multiple possible relations, we provide critical relations, which imply different averages of the process ranging from linear to nonlinear. All this allows us to derive spectral convergence as ?→0 for the associated spectral problems in the case of σ a linear function of u?. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
27.
The FFT‐based homogenization method of Moulinec–Suquet has recently attracted attention because of its wide range of applicability and short computational time. In this article, we deduce an optimal a priori error estimate for the homogenization method of Moulinec–Suquet, which can be interpreted as a spectral collocation method. Such methods are well‐known to converge for sufficiently smooth coefficients. We extend this result to rough coefficients. More precisely, we prove convergence of the fields involved for Riemann‐integrable coercive coefficients without the need for an a priori regularization. We show that our L2 estimates are optimal and extend to mildly nonlinear situations and Lp estimates for p in the vicinity of 2. The results carry over to the case of scalar elliptic and curl ? curl‐type equations, encountered, for instance, in stationary electromagnetism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
28.
严侠  黄朝琴  辛艳萍  姚军  李阳  巩亮 《物理学报》2015,64(13):134703-134703
高速通道压裂是近年在非常规致密油气资源开采中出现的新工艺, 已在世界范围内推广实施, 并取得了良好的增产效果. 该技术可使支撑剂在人工压裂缝中形成簇团式分布, 从而形成油气高速流动通道, 提高裂缝的导流能力. 但目前对于高速通道压裂裂缝高导流能力的形成机理及其影响因素尚不清楚. 对此, 本文从流体力学理论出发, 首先将高速通道压裂裂缝内形成的支撑剂簇团视为渗流区域, 簇团间的大通道视为自由流动区域; 然后基于Darcy-Brinkman方程建立了裂缝内的流动数学模型, 采用均匀化理论对该流动数学模型进行了尺度升级, 推导得到了高速通道压裂裂缝的渗透率, 揭示了其高导流能力的形成机理; 并以此为基础, 分析了不同支撑剂簇团形状、大小以及分布方式等因素对其导流能力的影响, 可为高速通道压裂工艺参数设计与优化提供基础.  相似文献   
29.
This paper proposes a nested dual-stage homogenization method for developing microstructure based continuum elasto-viscoplastic models for large secondary dendrite arm spacing or SDAS cast aluminum alloys. Microstructures of these alloys are characterized by extremely inhomogeneous distribution of inclusions along the dendrite cell boundaries. Traditional single-step homogenization methods are not suitable for this type of microstructure due to the size of the representative volume element (RVE) and the associated computations required for micromechanical analyses. To circumvent this limitation, two distinct RVE’s or statistically equivalent RVE’s are identified, corresponding to the inherent scales of inhomogeneity in the microstructure. The homogenization is performed in multiple stages for each of the RVE’s identified. The macroscopic behavior is described by a rate-dependent, anisotropic homogenization based continuum plasticity (HCP) model. Anisotropy and viscoplastic parameters in the HCP model are calibrated from homogenization of micro-variables for the different RVE’s. These parameters are dependent on microstructural features such as morphology and distribution of different phases. The uniqueness of the nested two-stage homogenization is that it enables evaluation of the overall homogenized model parameters of the cast alloy from limited experimental data, but also material parameters of constituents like inter-dendritic phase and pure aluminum matrix. The capabilities of the HCP model are demonstrated for a cast aluminum alloy AS7GU having a SDAS of 30 μm.  相似文献   
30.
We consider a mixed boundary‐value problem for the Poisson equation in a thick junction Ωε which is the union of a domain Ω0 and a large number of ε—periodically situated thin cylinders. The non‐uniform Signorini conditions are given on the lateral surfaces of the cylinders. The asymptotic analysis of this problem is done as ε→0, i.e. when the number of the thin cylinders infinitely increases and their thickness tends to zero. We prove a convergence theorem and show that the non‐uniform Signorini boundary conditions are transformed in the limiting variational inequalities in the region that is filled up by the thin cylinders as ε→0. The convergence of the energy integrals is proved as well. The existence and uniqueness of the solution to this non‐standard limit problem is established. This solution can be constructed by using a penalty formulation and successive iteration. For some subclass, these problems can be reduced to an obstacle problem in Ω0 and an appropriate postprocessing. The equations in Ω0 finally are also treated with boundary integral equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号