首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69514篇
  免费   6316篇
  国内免费   13082篇
化学   64986篇
晶体学   2341篇
力学   775篇
综合类   523篇
数学   4128篇
物理学   16159篇
  2024年   76篇
  2023年   1046篇
  2022年   1079篇
  2021年   2102篇
  2020年   2215篇
  2019年   2964篇
  2018年   1876篇
  2017年   3020篇
  2016年   2543篇
  2015年   2273篇
  2014年   2962篇
  2013年   6257篇
  2012年   4473篇
  2011年   4781篇
  2010年   3903篇
  2009年   4600篇
  2008年   4631篇
  2007年   4776篇
  2006年   4471篇
  2005年   3956篇
  2004年   3807篇
  2003年   3126篇
  2002年   2690篇
  2001年   2147篇
  2000年   2037篇
  1999年   1626篇
  1998年   1421篇
  1997年   1214篇
  1996年   970篇
  1995年   1012篇
  1994年   844篇
  1993年   684篇
  1992年   641篇
  1991年   496篇
  1990年   336篇
  1989年   285篇
  1988年   248篇
  1987年   165篇
  1986年   134篇
  1985年   149篇
  1984年   119篇
  1983年   57篇
  1982年   95篇
  1981年   125篇
  1980年   83篇
  1979年   110篇
  1978年   63篇
  1977年   65篇
  1976年   45篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 751 毫秒
21.
近年来深度卷积神经网络在可见光船舶检测方面取得了显著的进展,然而,大多数相关研究是通过改进大型的网络结构来提高检测性能,因此加大了对更高计算机性能的需求。此外,可见光图像难以在云、雾、海杂波、黑夜等复杂场景检测到船舶。针对以上问题,提出了一种融合红(red, R)、绿(green, G)、蓝(blue, B)和近红外(NIR)4个波段光谱信息的由粗到精细的轻量型船舶检测算法。与现有的方法中根据光谱特性利用水体检测算法提取水体区域不同之处是该算法是利用改进的水体检测算法来提取船舶候选区域。为获取更准确的候选区域,对船舶、厚云、薄云、平静海面、杂波海面5种场景中4个波段的像素值进行了统计分析,选取近红外大于阈值作为辅助判断,并以其中心点获取候选区域32×32大小的切片,并对切片进行非极大值抑制,由此获得了船舶粗检测结果。随后构建了轻量级LSGFNet网络对船舶候选区域切片进行精细识别。构建的网络融合了1×1卷积提取的波谱特征与3×3的提取几何特征,为防止光谱特征与几何特征的信息在融合时“信息不流通”,在LSGFNet网络中引入了ShuffleNet中的通道打乱机制,并减小了模型结构,与典型的轻量级网络相比具有更好的效果且模型较小。最后,利用Sentinel-2卫星多光谱10 m分辨率数据构建了512×512大小的1 120组数据进行粗检测,以及32×32大小的6 014组数据进行精细网络训练,其中候选区域粗提取的查全率为98.99%,精细识别网络精确度为96.04%,不同场景下的平均精确度为92.98%。实验表明该算法在抑制云层、海浪杂波等干扰的复杂背景下具有较高的检测效率,且训练时间短、计算机性能需求低。  相似文献   
22.
The direct 2‐deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2‐deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2‐deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2‐deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2‐deoxyglycosylation reaction difficult. Diffusion‐ordered two‐dimensional NMR spectroscopy analysis implied that the 2‐chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π‐scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.  相似文献   
23.
The structure and rotational barrier for the mesityl-silicon bond of 2,2-dimesityl-1,1,1,3,3,3-hexamethyltrisilane have been investigated by 1H- and 13C-variable temperature nuclear magnetic resonance (NMR) as well as by density functional theory structural calculations. The calculations show that the lowest energy structure has C2 symmetry with nonequivalent ortho methyl groups, consistent with the crystal structure and solution NMR. The nonequivalent ortho methyl groups exchange through a Cs transition state with a calculated relative free energy of 11.0 kcal mol−1. The barrier for this rotation found by dynamic NMR is 13.4 ± 0.2 kcal mol−1 at 298 K.  相似文献   
24.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
25.
Metabolomics is a potential tool for the discovery of new biomarkers in the early diagnosis of diseases. An ultra-fast gas chromatography system equipped to an electronic nose detector (FGC eNose) was used to identify the metabolomic profile of Volatile Organic Compounds (VOCs) in type 2 diabetes (T2D) urine from Mexican population. A cross-sectional, comparative, and clinical study with translational approach was performed. We recruited twenty T2D patients and twenty-one healthy subjects. Urine samples were taken and analyzed by FGC eNose. Eighty-eight compounds were identified through Kovats's indexes. A natural variation of 30% between the metabolites, expressed by study groups, was observed in Principal Component 1 and 2 with a significant difference (p < 0.001). The model, performed through a Canonical Analysis of Principal coordinated (CAP), allowed a correct classification of 84.6% between healthy and T2D patients, with a 15.4% error. The metabolites 2-propenal, 2-propanol, butane- 2,3-dione and 2-methylpropanal, were increased in patients with T2D, and they were strongly correlated with discrimination between clinically healthy people and T2D patients. This study identified metabolites in urine through FGC eNose that can be used as biomarkers in the identification of T2D patients. However, more studies are needed for its implementation in clinical practice.  相似文献   
26.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
27.
28.
Kinetics and mechanism of the gas-phase reaction of CH3C(O)OCH(CH3)CH2OCH3 (MPA) with OH radicals in the presence of O2 and NO have been investigated theoretically by performing a high and reliable level of theory, viz., CCSD(T)/6-311?+?G(d,p)//BH&HLYP/6-311++G(d,p)?+?0.9335×ZPE. The calculations predict that the H-abstraction from the ?CH2?O? position of MPA is the most facile channel, which leads to the formation of the corresponding alkoxy radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 under atmospheric conditions. This activated radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 will undergo further rearrangement, fragmentation and oxidative reactions and predominantly leads to the formation of various products (methyl formate HC(O)OCH3 and acetic anhydride CH3C(O)OC(O)CH3). In the presence of water, acetic anhydride can convert into acetic acid CH3C(O)OH via the hydrolysis reaction. The calculated total rate constants over the temperature range 263–372?K are used to derive a negative activation energy (Ea= ?5.88 kJ/mol) and an pre-exponential factor (A?=?1.78×10?12 cm3 molecule?1 s?1). The obtained Arrhenius parameters presented here are in strong agreement with the experimental values. Moreover, the temperature dependence of the total rate constant over a temperature range of 263?1000?K can be described by k?=?5.60 × 10?14×(T/298?K)3.4×exp(1725.7?K/T) cm3 molecule?1 s?1.  相似文献   
29.
New thermoelectric materials, n-type Bi6Cu2Se4O6 oxyselenides, composed of well-known BiCuSeO and Bi2O2Se oxyselenides, are synthesized with a simple solid-state reaction. Electrical transport properties, microstructures, and elastic properties are investigated with an emphasis on thermal transport properties. Similar to Bi2O2Se, it is found that the halogen-doped Bi6Cu2Se4O6 possesses n-type conducting transports, which can be improved via Br/Cl doping. Compared with BiCuSeO and Bi2O2Se, an extremely low thermal conductivity can be observed in Bi6Cu2Se4O6. To reveal the origin of low thermal conductivity, elastic properties, sound velocity, Grüneisen parameter, and Debye temperature are evaluated. Importantly, the calculated phonon mean free path of Bi6Cu2Se4O6 is comparable to the interlayer distance for BiO─CuSe and BiO─Se layers, which is ascribed to the strong interlayer phonon scattering. Contributing from the outstanding low thermal conductivity and improved electrical transport properties, the maximum ZT ≈0.15 at 823 K and ≈0.11 at 873K are realized in n-type Bi6Cu2Se3.2Br0.8O6 and Bi6Cu2Se3.6Cl0.4O6, respectively, indicating the promising thermoelectric performance in n-type Bi6Cu2Se4O6 oxyselenides.  相似文献   
30.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号