首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   45篇
  国内免费   15篇
化学   152篇
晶体学   7篇
综合类   1篇
物理学   42篇
  2023年   5篇
  2022年   8篇
  2021年   11篇
  2020年   13篇
  2019年   4篇
  2018年   11篇
  2017年   12篇
  2016年   17篇
  2015年   13篇
  2014年   17篇
  2013年   9篇
  2012年   10篇
  2011年   16篇
  2010年   12篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2003年   1篇
排序方式: 共有202条查询结果,搜索用时 250 毫秒
21.
22.
Adopting LB film method, an arachidic acid (AA)/PEDOT multilayer LB film was chosen, and polymerized EDOT monomers in hydrophilic group of LB to prepare arachidic acid (AA)/PEDOT multilayer LB film. UV‐Vis, FT‐IR and XPS analyses implied that EDOT was effectively polymerized in film, and thus PEDOT conducting polymer was produced. Analyses of XRR and SIMS indicated that film had a well‐arranged lamella structure, and further research showed that polymerization of EDOT in AA film destroyed the orderliness of the original LB film. This phenomenon could be related to the destructive effect of polymerization on layered structure. We used four‐point probe and semiconductor instrument to study the conductivity property of the film, and observed that the conductivity of AA/PEDOT film had sudden changes with the processing time of changes in effective conduction network. That was caused by "permeability" in conducting channel of multilayer film. The test results also indicated that the conductivity of AA/PEDOT film was obviously better than that of spin‐coating PEDOT/PSS film or that of ODA‐SA/PEDOT‐PSS film, which was due to the higher π structure of PEDOT structure and ordered film structure.  相似文献   
23.
Electrically conducting poly(3,4‐ethylenedioxythiophene) (PEDOT) film doped with silicomolybdate (SiMo12O404? or SiMo12) was synthesized by electrochemical polymerization. The synthesized film is capable of fast charge propagation during redox reactions in strong acid medium 0.2 M H2SO4 solution. The modified electrode was used towards reduction of bromate and successfully employed as an amperometric sensor for bromate and also above modified electrode was investigated for ascorbic acid oxidation.  相似文献   
24.
This study incorporates morphine into a molecularly imprinted polymer (MIP) for the amperometric detection of morphine. The polymer, poly(3,4-ethylenedioxythiophene), PEDOT, is an electroactive film that catalyzes morphine oxidation and lowers the oxidization potential on an indium tin oxide (ITO) electrode. The MIP-PEDOT modified electrode is prepared by electropolymerizing PEDOT onto an ITO electrode in a 0.1 M LiClO4 solution with template addition (morphine). After template molecule extraction, the oxidizing current of the MIP-PEDOT modified electrode is measured in a 0.1 M KCl solution (pH = 5.3) at 0.75 V (versus Ag/AgCl/sat’d KCl) with the morphine concentration varying in the 0.1-5 mM range. A linear range, displaying the relationship between steady-state currents and morphine concentrations, from 0.1 to 1 mM, is obtained. The proposed amperometric sensor could be used for morphine detection with a sensitivity of 91.86 μA/cm2 per mM. A detection limit of 0.2 mM at a signal-to-noise ratio of 3 is achieved. Moreover, the proposed method can discriminate between morphine and its analogs, such as codeine.  相似文献   
25.
Novel poly(3,4‐ethylenedioxythiophene) (PEDOT) polymers bearing imidazolium‐ionic liquid moieties were synthesized by electrochemical polymerizations. For this purpose, new functional monomers were synthesized having an 3,4‐ethylenedioxythiophene (EDOT) unit and an imidazolium‐ionic liquid with different anions such as tetrafluoroborate (BF), bis(trifluoromethane)sulfonimide ((CF3SO2)2N?), and hexafluorophosphate (PF). Next, polymer films were obtained by electrochemical synthesis in dicholoromethane solutions. Obtained polymers were characterized, revealing the characteristics of PEDOT in terms of electrochemical and spectroelectrochemical properties, FTIR, 1H NMR, and AFM microscopy. Interestingly, the hydrophobic character of electropolymerized films could be modified depending on the anion type. The hydrophobicity followed the trend PF > (CF3SO2)2N? > BF > pure PEDOT as determined by water contact angle measurements. Furthermore, the polymers could be dissolved in a range of polar organic solvents such as dimethylformamide, propylene carbonate, and dimethyl sulfoxide making these polymers interesting candidates for wet processing methods. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3010–3021, 2009  相似文献   
26.
Direct anodic oxidation of 1,2-methylenedioxybenzene (MDOB) and 1,2-ethylenedioxybenzene (EDOB), analogues of 3,4-alkylenedioxythiophene and 3,4-alkylenedioxypyrrole, led to the formation of polyacetylene derivatives, poly(1,2-methylenedioxybenzene) (PMDOB) and poly(1,2-ethylenedioxybenzene) (PEDOB), on a platinum sheet in pure boron trifluoride diethyl etherate (BFEE). IR, 1H NMR, 13C NMR and quantum chemistry calculations confirmed that the polymerization occurred at C(4) and C(5) position on the benzene ring of the monomer, making the main backbone of PMDOB and PEDOB similar to polyacetylene. Both dedoped PMDOB and PEDOB in DMSO solution showed good fluorescence properties with quantum yields of 0.13 and 0.27, emitting blue and green light under excitation of 365 nm, respectively. PMDOB showed electrochromic properties from grass green (doped) to light nacarat (dedoped). PEDOB changed it from bottle green (doped) to nacarat (dedoped). Doped PMDOB and PEDOB own electrical conductivities of 0.1 S cm−1 and 0.17 S cm−1, respectively.  相似文献   
27.
28.
A high power conversion efficiency (PCE) of 5.5 % was achieved by efficiently incorporating a diketopyrrolopyrrole‐based dye with a conducting polymer poly(3,4‐ethylenediothiophene) (PEDOT) hole‐transporting material (HTM) that was formed in situ, compared with a PCE of 2.9 % for small molecular spiro‐OMeTAD‐based solid‐state dye solar cells (sDSCs). The high PCE for PEDOT‐based sDSCs is mainly attributed to the significantly enhanced charge‐collection efficiency, as a result of the three‐order‐of‐magnitude higher hole conductivity (0.53 S cm?1) compared with that of the widely used low molecular weight HTM spiro‐OMeTAD (3.5×10?4 S cm?1).  相似文献   
29.
There is an actual need of advanced materials for the emerging field of bioelectronics. One commonly used material is the conducting polymer poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) due to its general use in organic electronics. However, depending on the application in bioelectronics, PEDOT:PSS is not fully biocompatible due to the high acidity of the residual sulfonate protons of PSS. In this paper, the synthesis and biocompatibility properties of new poly(3,4‐ethylenedioxythiophene):GlycosAminoGlycan (PEDOT:GAG) aqueous dispersions and its resulting films are shown. Thus, negatively charged GAGs as an alternative to PSS are presented. Three different commercially available GAGs, hyaluronic acid, heparin, and chondroitin sulfate are used. Indeed, PEDOT:GAGs dispersions are prepared through an oxidative chemical polymerization in water. Biocompatibility assays of the PEDOT:GAGs coatings are performed using SH‐SY5Y and CCF‐STTG1 cell lines and with ATP and Ca2+. Results show full biocompatibility and a pronounced anti‐inflammatory effect. This last characteristic becomes crucial if implanted in the body. These materials can be used for in vivo applications, as transistor or electrode for electrical recording and for all the possible situations when there is contact between electronic circuits and living tissues.

  相似文献   

30.
Yasri NG  Halabi AJ  Istamboulie G  Noguer T 《Talanta》2011,85(5):2528-2533
A new simple chronoamperometry methodology was developed for the ultrasensitive determination of lead ions using a PEDOT:PSS coated graphite carbon electrode. The polymer was directly coated on a graphite carbon electrode and characterized using simple cycle voltammetric measurements. The presence of lead ions induced a cathodic peak starting at −550 ± 10 mV vs. Ag/AgCl, and an anodic peak starting at −360 ± 10 mV vs. Ag/AgCl. Electroaccumulation of lead ions onto the PEDOT:PSS modified electrode was performed at −650 mV vs. Ag/AgCl for 30 s in a pH 2.2 hydrochloric acid solution. Chronoamperometry measurements were carried out at −350 mV vs. Ag/AgCl allowing the oxidation of accumulated lead. Using this method, lead ions were detected for concentrations ranging between 2.0 nmol L−1 and 0.1 μmol L−1 (R2 = 0.999). The detection limit was calculated to be 0.19 nmol L−1 and the quantification limit of 0.63 nmol L−1. The method was shown to be highly precise and sensitive, negligible interference was detected from other metal ions. The proposed method was successfully applied for the detection of lead ions in vegetables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号