首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   17篇
  国内免费   4篇
化学   223篇
晶体学   2篇
力学   50篇
数学   37篇
物理学   76篇
  2023年   2篇
  2022年   12篇
  2021年   18篇
  2020年   21篇
  2019年   30篇
  2018年   29篇
  2017年   26篇
  2016年   17篇
  2015年   16篇
  2014年   29篇
  2013年   30篇
  2012年   43篇
  2011年   39篇
  2010年   19篇
  2009年   12篇
  2008年   12篇
  2007年   13篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有388条查询结果,搜索用时 17 毫秒
21.
Abstract

The gas-phase thermal decomposition kinetics of silacyclobutane (1), 1-methyl- silacyclobutane (2), and 1,1-dimethyl-1-silacyclobutane (3) has been theoretically studied at the B3LYP/6-311G**, B3PW91/6-311G**, and MPW1PW91/6-311G** levels. The B3LYP/6-311G** method was found to give a reasonable good agreement with the experimental kinetics and thermodynamic parameters. The decomposition reaction of compounds 13 yields ethylene and the corresponding silene. Based on the optimized ground state geometries using B3LYP/6-311G** method, the natural bond orbital (NBO) analysis of donor-acceptor (bonding–antibonding) interactions revealed that the perturbation energies (E2) associated with the electronic delocalization from σSi1–C2 to σ*C4–Si1 orbitals increase from compounds 1 to 3. The σSi1–C2→σ*C4–Si1 resonance energies for compounds 13 are 1.17, 1.26, and 1.43 kcal/mol, respectively. Also, the decomposition process in these compounds is controlled by σ→σ* resonance energies. Moreover, the obtained order of energy barriers could be explained by the number of electron-releasing methyl groups substituted to the Sisp2 atom. NBO analysis shows that the occupancies of σSi1–C2 bonds decrease for compounds 13 as 3 < 2 < 1, and the occupancies of σ*Si1–C2 bonds increase in the opposite order (3 > 2 > 1). Moreover, these results can fairly explain the decrease of the energy barriers (ΔEo) of the decomposition reaction of compounds 1 to 3. The calculated data demonstrate that in the decomposition process of the studied compounds, the polarization of the C3–C4 bond is the rate determining factor. Analysis of bond orders, NBO charges, bond indexes, synchronicity parameters, and IRC calculations indicate that these reactions are occurring through a concerted and asynchronous four-membered cyclic transition state type of mechanism.  相似文献   
22.
Mesoporous CuFe2O4 solid solution nanopowders with high specific surface areas were synthesized by a novel, very simple and inexpensive sol-gel route using propylene oxide as gelation agent, and used as the catalyst in low temperature CO oxidation. The samples were characterized by X-ray diffraction, N2 adsorption-desorption, thermogravimetric/differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and temperature-programmed reduction. The results revealed that the samples have a nanocrystalline structure with crystals in the range of 10 to 25 nm, and that all the catalysts have mesoporous pores. The addition of Cu into iron oxide affected its structural and catalytic properties. The sample containing 15 mol% Cu showed the highest specific surface area and catalytic activity, and showed high catalytic stability in low temperature CO oxidation.  相似文献   
23.
A novel one-pot, five-component synthesis of 1-(alkylimino)-5,5-dicyano-3a-aryloctahydro-3-oxacyclobuta[cd]pentalene-1a,2,5a,5b(2H,3aH)-tetracarboxylates is described. A mixture of phenacyl bromide, malononitrile, isocyanide, and two equivalents of a dialkyl acetylenedicarboxylate undergoes a novel 1:1:1:2 addition reaction at ambient temperature in absolute ethanol to produce diastereoselectively the title compounds in good yields.  相似文献   
24.
Journal of Analytical Chemistry - In this study, for the first time, the organic gas steam-liquid extraction by a special hand-made cell was used as a simple and inexpensive preconcentration...  相似文献   
25.
26.
Type 2 diabetes mellitus is the result of resistance to insulin function along with inadequate insulin secretion, leading to a number of dysfunctions characterized by hyperglycemia, and it is associated with microvascular, macrovascular, and neuropathic complications. There is compelling evidence that the decline in both insulin sensitivity and insulin secretion has a genetic component. In addition, increasing evidence suggests that microRNAs (miRNAs) as key regulators of gene expression play significant roles in insulin production, secretion, and function that regulate the function of insulin-target tissues. The current review demonstrates the candidate genes and the related miRNAs involved in molecular pathogenesis of insulin resistance in type 2 diabetes mellitus. In doing so, it provides an opportunity for more focused investigations that may identify the genes and miRNAs with a role in the pathogenesis of type 2 diabetes mellitus and its treatment.  相似文献   
27.

Safety issues of Li-ion batteries imposed by unfavorable thermal behavior accentuate the need for efficient thermal management systems to prevent the runaway conditions. To that end, a hybrid thermal management system is designed and further investigated numerically and experimentally in the present study. The passive cooling system is fabricated by saturating copper foam with paraffin as the phase change material (PCM) and integrated with an active cooling system with alumina nanofluid as the coolant fluid. Results for various Reynolds numbers and different heating powers indicate that the hybrid nanofluid cooling system can successfully fulfill safe operation of the battery during stressful operating conditions. The maximum time in which all PCM field is changed to the liquid phase is defined as the onset of the stressful conditions. Therefore, the start time of stressful conditions at 41 W and Re 420 is increased from 3700 s with nanofluid composed of 1% volume fraction nanoparticles (VF-1%) to 4600 s with nanofluid VF-2% during high current discharge rates. Nanofluid cooling extends the operating time of the battery in comparison with the water-based cooling system with 200-s (nanofluid with volume fraction of 1%) and 900-s (nanofluid with volume fraction of 2%) increases in operating time at Reynolds of 420. Using nanofluid, instead of water, postpones the onset of paraffin phase transition effectively and prolongs its melting time which consequently leads to a decrease in the rate of temperature rise.

  相似文献   
28.
An efficient synthesis of aryliminophosphoranes is described. A mixture of an aromatic amine, diethyl azodicarboxylate and triphenylphosphine undergo a Mitsonobu type reaction at ambient temperature in dry dichloromethane to afford aryliminophosphoranes in excellent yields.  相似文献   
29.
A combination of negative refraction and diffraction compensation in a superprism-based photonic crystal structure is used to demonstrate a compact on-chip photonic crystal spectrometer. This structure provides strong dispersion and signal isolation, which are essential for forming an efficient and compact spectrometer. Performance of these spectrometers as spectral pattern detectors is discussed. The experimental results show that a PC structure with 80 μm × 220 μm dimension can locate a single spectral feature with better than 10 pm accuracy over a bandwidth of 50 nm around 1550 nm center wavelength at an output signal-to-noise ratio of 13 dB.  相似文献   
30.
This paper deals with the Finite Difference Time Domain (FDTD) simulation of interaction of an electromagnetic wave with a switched plasma slab. In formulating the simulation the well-known concepts of (a) total-field/scattered-field formulation (b) and PML lattice truncation are adapted to suit the simulation under consideration.FDTD is particularly well suited to handle the switched (time-varying) medium (including sudden switching) since the time varying parameters of the medium can be easily interpreted in the algorithm. The technique is applied to the difficult problem of interaction of an electromagnetic pulse source wave of frequency 0 and a gaussian envelope with a newly created plasma slab of time-varying and space varying electron density profile. The creation of a pulse of Wiggler magnetic field in the slab is illustrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号