首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   36篇
  国内免费   8篇
化学   477篇
晶体学   5篇
力学   58篇
数学   109篇
物理学   105篇
  2023年   4篇
  2022年   14篇
  2021年   26篇
  2020年   33篇
  2019年   40篇
  2018年   47篇
  2017年   41篇
  2016年   32篇
  2015年   34篇
  2014年   61篇
  2013年   77篇
  2012年   70篇
  2011年   63篇
  2010年   46篇
  2009年   23篇
  2008年   23篇
  2007年   23篇
  2006年   15篇
  2005年   18篇
  2004年   16篇
  2003年   14篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1996年   3篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有754条查询结果,搜索用时 31 毫秒
1.

One of the main concerns during the COVID-19 pandemic was the protection of healthcare workers against the novel coronavirus. The critical role and vulnerability of healthcare workers during the COVID-19 pandemic leads us to derive a mathematical model to express the spread of coronavirus between the healthcare workers. In the first step, the SECIRH model is introduced, and then the mathematical equations are written. The proposed model includes eight state variables, i.e., Susceptible, Exposed, Carrier, Infected, Hospitalized, ICU admitted, Dead, and finally Recovered. In this model, the vaccination, protective equipment, and recruitment policy are considered as preventive actions. The formal confirmed data provided by the Iranian ministry of health is used to simulate the proposed model. The simulation results revealed that the proposed model has a high degree of consistency with the actual COVID-19 daily statistics. In addition, the roles of vaccination, protective equipment, and recruitment policy for the elimination of coronavirus among the healthcare workers are investigated. The results of this research help the policymakers to adopt the best decisions against the spread of coronavirus among healthcare workers.

  相似文献   
2.
We provide a bound on a distance between finitely supported elements and general elements of the unit sphere of ?2(N1). We use this bound to estimate the Wasserstein-2 distance between random variables represented by linear combinations of independent random variables. Our results are expressed in terms of a discrepancy measure related to Nourdin–Peccati’s Malliavin–Stein method. The main application is towards the computation of quantitative rates of convergence to elements of the second Wiener chaos. In particular, we explicit these rates for non-central asymptotic of sequences of quadratic forms and the behavior of the generalized Rosenblatt process at extreme critical exponent.  相似文献   
3.
4.
For seeking high‐efficiency narrow‐band‐gap donor materials to enhance short‐circuit current density for organic solar cells, a series of oligo‐selenophene (OS) and oligo(3,4‐ethylenedioxyselenophene) (OEDOS) with various chain lengths were designed and characterized using density functional theory (DFT) and time‐dependent DFT calculations. Based on the results, it can be seen that with increasing chain length of the oligomers in both syn‐ and anti‐adding manners, the bond length alternation is decreased which indicates that the π‐electron delocalization is increased. Also, when the chain length is increased the electronic energy gap and the optical energy gap are decreased. It can be concluded that the syn‐(OS)n=10,14,15, anti‐(OS)n=14 and anti‐(OEDOS)n=7–12 oligomers can act as low‐band‐gap polymers. Therefore they can absorb more sunlight based on maximum wavelength (higher than 620 nm). Furthermore, a red shift in the simulated absorption spectra of (OS)n and (OEDOS)n donors is observed. It is found that (OS)n=14,15 with syn configuration of the extended oligomers is the most suitable donor for the design of high‐performance organic solar cells possessing a narrow electronic band gap, high exciton lifetime and broad and intense absorption spectra that cover the solar spectrum leading to complete light‐harvesting efficiency.  相似文献   
5.
Despite the outstanding properties of hyperbranched polyglycerols such as biocompatibility and multifunctionality, enough attention has not been paid to the synthesis of their functional copolymers. This problem has limited the structural diversity of hyperbranched polyglycerols and hampers further developments and their practical usage. In this work, butyrolactone segments were incorporated into the backbone of polyglycerols by one‐pot ring‐opening copolymerization of a mixture of glycidol and γ‐butyrolactone in the presence of tin(II) 2‐ethylhexanoate. Poly(glycerol‐oligoγ‐butyrolactone)s were then crosslinked by 2,5‐thiophenediylbisboronic acid to obtain polymeric nanonetworks with 140 nm average size. Afterwards, the gold electrode was modified by the polymeric nano‐networks, and it was used for the determination of glucose, glycated hemoglobin, and Escherichia coli in phosphate buffer solution (pH = 9.0) through cyclic voltammetry and impedance spectroscopic. Taking advantage of the straightforward synthesis, cheap precursors and multifunctionality of poly(glycerol‐oligoγ‐butyrolactone)s, they could be used for real‐time sensing of a wide range of biosystems. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1430–1439  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号