首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1036篇
  免费   67篇
  国内免费   67篇
化学   890篇
晶体学   1篇
力学   145篇
综合类   1篇
数学   12篇
物理学   121篇
  2023年   6篇
  2022年   10篇
  2021年   34篇
  2020年   18篇
  2019年   36篇
  2018年   29篇
  2017年   43篇
  2016年   47篇
  2015年   36篇
  2014年   57篇
  2013年   152篇
  2012年   33篇
  2011年   32篇
  2010年   48篇
  2009年   59篇
  2008年   55篇
  2007年   50篇
  2006年   40篇
  2005年   55篇
  2004年   50篇
  2003年   35篇
  2002年   38篇
  2001年   27篇
  2000年   19篇
  1999年   21篇
  1998年   19篇
  1997年   28篇
  1996年   11篇
  1995年   19篇
  1994年   8篇
  1993年   10篇
  1992年   10篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
排序方式: 共有1170条查询结果,搜索用时 15 毫秒
151.
Polypropylene (PP)/polyester (PES)–blend fibers were prepared by extruder melt spinning. The polymer blend consisted of PP and a “master batch” (MB) based on polytrimethylene terephthalate (PTT) or polyethylene terephthalate (PET), binary PTT/PET or PP/PTT blends, and also on a ternary PP/(PTT/PET) blend. The phase structure of PP/PES–blend fibers was examined. PES microfibers showed separation from the PP matrix in blend fibers. The impact of MB composition and rheological characteristics on phase structure parameters indicate a significant contribution of the PTT in the binary MB on the length of dispersed PES microfibers in the PP matrix. However, the blends of PP and ternary MB (PP/PTT/PET) have a lower diameter and length of the PES microfibers. The presence of PTT/PET (PES) enhances the structural and mechanical properties of the blend PP/PES fibers. In addition, PTT increases the tensile strength of the PP/PES–blend fibers if a binary MB is used, while the fiber nonuniformity is reduced in the presence of a ternary MB.  相似文献   
152.
Sulfonated polyacrylamide (SPAA) solutions were prepared and the effects of pressure, polymer concentration, and water temperature, pH and salinity on their rheological behavior were investigated using a concentric cylinder dynamic rheometer equipped with a high pressure cell. According to the rheological flow curves the shear stress of SPAA solutions increased less than in proportion to their shear rates; that is, a shear thinning effect occurred. For polymer solutions containing 15,000 ppm of SPAA, shear viscosity, and stress were nearly insensitive to pressure. However, the shear viscosity and stress of SPAA solutions were affected by temperature and this effect was more evident at lower pressure. The flow curves indicated the shear viscosity and stress of the samples increased with increasing SPAA concentration and pH of the water, but were decreased with increasing water salinity and temperature.  相似文献   
153.
Steadyshear and oscillatory shear rheological measurements were performed to characterize the solution rheological behavior of poly(3,3′-diaminodiphenylsulfone terephthaloylchloride) (P(3,3′-DDS-TPC)) in dimethyl sulfoxide (DMSO). The effects of temperature, concentration, and weight-average molar mass () on the rheological properties were investigated. From the temperature dependence of zero-shear viscosity, the flow activation energies, Eη, of P(3,3′-DDS-TPC)/DMSO solutions were calculated. Both the overlap concentration, C*, and the entanglement concentration, Ce, were determined from the concentration dependence of the specific viscosity ηsp. All the P(3,3′-DDS-TPC) solutions, we studied, can be separated into three regimes: the dilute, semidilute-unentangled, and entangled regime with slopes of 1, 1.3, and 3.9, of concentration versus ηsp plots, respectively, which are consistent with scaling predictions for flexible polymers in a good solvent.  相似文献   
154.
The behavior of polyvinylpyrrolidone in mixed water/methanol solvents was studied by rheoviscosimetry over a temperature range of 20°C–40°C. For the lower temperatures of this range, the intrinsic viscosity variation of the polymer vs. methanol molar fraction shows structural transitions (coil–globule–coil). This transition, which is usually attributed to the cononsolvency phenomenon, agrees with our previously published results obtained by dynamic light scattering. For higher temperatures, near 40°C, the intrinsic viscosity increase shows an expansion of the polymer over the alcohol molar fraction range 0.2 < X A < 0.5. This last result can be attributed to the water/alcohol complex destruction under temperature increase. The “excess viscosity” of the polymer-mixed solvents vanishes with increasing temperature and becomes positive at 40°C. So, the polymer chain tends to transit from a globular to an ideal chain in the middle composition range of the mixed solvents.  相似文献   
155.
The effect of microsized barium sulfate (BaSO 4 ) on the rheological properties of Polycarbonate (PC) was investigated. The composite exhibits a reduced viscosity as compared to pure PC, indicating that use of barium sulfate is a new method to enhance the mobility of PC melts. Model calculation of this behavior was carried out according to a viscosity rheological equation. Values of model parameters were obtained and discussed. Other rheological properties were also determined, including frequency dependence of storage modulus and loss modulus. Analysis by Fourier Transform Infrared (FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS) shows that the barium sulfate fillers strongly interact with PC chains, with the type of interaction being determined.  相似文献   
156.
The rheology and morphology of multi-walled carbon nanotube (MWNT)/polypropylene (PP) nanocomposites prepared via melt blending was investigated. The minor phase content of MWNT varied between 0.25 and 8 wt%. From morphological studies using a scanning electron microscopy technique a good dispersion of carbon nanotubes in the PP matrix was observed. The rheological studies were performed by a capillary rheometer, and mechanical properties of the nanocomposites were studied using a tensile and flexural tester. Both PP and its nanocomposites showed non-Newtonian behavior. At low shear rates the addition of MWNT content causes an increase in viscosity; however, viscosity is less sensitive to addition of MWNT content at higher shear rates. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. From this calculation it was concluded that the temperature sensitivity of nanocomposites was increased by increasing of nanotube content. An increase in tensile and flexural moduli and Izod impact strength was also observed by increasing the MWNT content. From rheological and mechanical tests it was concluded that the mechanical and rheological percolation threshold is at 1.5 wt%.  相似文献   
157.
A polyborylborazine precursor for hexagonal boron nitride (h-BN) was obtained by reaction of boron trichloride with methylamine and its structure was characterized by 11BNMR, 13CNMR, 1HNMR, and FTIR. The results show that the molecular precursor consists of borazine rings connected via a cross-linked network. The results of shear rheological tests indicated that the polymer is capable of being melt spun at moderate temperature, which implies that the structure of the molecular chains of the precursor polymer is branched. The precursor polymer was spun into a continuous polymer fiber in the melt state and then subsequently heat-treated under NH3 up to 1000°C for conversion into BN fibers. Its surface morphology was observed by scanning electron microscopy (SEM); the fiber was free of defects and cavities.  相似文献   
158.
The nonisothermal crystallization behavior of polypropylene (PP) and PP-fullerene (C60) nanocomposites was studied by differential scanning calorimetry (DSC). The kinetic models based on the Jeziorny, Ozawa, and Mo methods were used to analyze the nonisothermal crystallization process. The onset crystallization temperature (Tc), half-time for the crystallization (t1/2), kinetic parameter (F(T)) by the Mo method and activation energy (ΔE) estimated by the Kissinger method showed that C60 accelerates the crystallization of PP, implying a nucleating role of C60. Furthermore, due to the reduced viscosity of PP by adding 5% C60, the parameters of crystallization kinetics for the PP-5%C60 nanocomposites changed remarkably relative to that of neat PP and when lower contents of C60 were added to PP.  相似文献   
159.
Subcritical water extraction of Himanthalia elongata and the subsequent acetone fractionation to precipitate crude fucoidans generated a liquid phase which was used to recover alginates with a wide range of viscoelastic features and other soluble extracts with potential biological activities. The precipitated alginate was converted to sodium alginate using an environmentally friendly treatment before being characterized by Fourier transform infrared attenuated total reflectance, nuclear magnetic resonance, high performance size exclusion chromatography and rheological measurements. The cell viability of three human cell lines (A549, HCT-116, T98G) in the presence of the extracts obtained before and after acetone fractionation was assessed. Fractionation with different acetone volumes showed a slight effect in the behavior of the different tested cell lines. Results also indicated a notable effect of the processing conditions on the block structure and molar mass of the extracted biopolymer, with the subsequent impact on the rheological properties of the corresponding gelled matrices.  相似文献   
160.
The effective viscosity of carbon nanotube nanofluids is strongly dependent on the temperature and concentration. The aggregation behaviour that carbon nanotubes exhibit in solution and the orientation variation of single carbon nanotube make rheological properties of nanofluids more complex. With the increase of shear rate, the degree of dispersion and orientation of carbon nanotubes will be improved. Based on previous studies and the fact mentioned above, a reasonable expression for viscosity of carbon nanotube nanofluids has been given, which is associated with the shear rate and aspect ratios of carbon nanotubes. The expression has been validated comparing with previous experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号