首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   22篇
  国内免费   6篇
化学   56篇
力学   414篇
综合类   2篇
数学   55篇
物理学   158篇
  2023年   7篇
  2022年   3篇
  2021年   18篇
  2020年   16篇
  2019年   12篇
  2018年   17篇
  2017年   19篇
  2016年   30篇
  2015年   18篇
  2014年   39篇
  2013年   74篇
  2012年   26篇
  2011年   60篇
  2010年   38篇
  2009年   50篇
  2008年   42篇
  2007年   38篇
  2006年   41篇
  2005年   27篇
  2004年   21篇
  2003年   13篇
  2002年   18篇
  2001年   7篇
  2000年   8篇
  1999年   6篇
  1998年   10篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   4篇
  1989年   1篇
  1987年   2篇
  1971年   1篇
排序方式: 共有685条查询结果,搜索用时 468 毫秒
141.
Dust emission from storage yards is a multivariable problem to be solved not only at any new installation in order to obtain the licenses from the involved authorities but also at existing yards to continue the operation. Engineers have a great variety of methodologies available at the market to estimate such emissions, but in general the process is divided into two independent stages: wind flow analysis and application of emission rates into such wind pattern. This paper summarizes the research developed by this group to link both steps: by using CFX version 10.0, a powerful computational fluid dynamics (CFD) software, the wind flow around the piles is predicted, or even through a complex yard, and at the same time by implementing new subroutines introduced into the standard software, the program is able to give a quantitative evaluation of the total fugitive dust.  相似文献   
142.
CFD study of section characteristics of Formula Mazda race car wings   总被引:1,自引:0,他引:1  
A great deal of research has been done on the aerodynamic characteristics of race cars competing in major racing series through out the world. Because of the competitive nature of motor sport, this research is usually not published until after it is obsolete. The teams operating at the minor league levels of the sport do not have the funding resources of the major series to perform aerodynamic research. In an effort to provide some information for teams competing in the minor league Formula Mazda racecar class, this study was conducted using the Star-CD CFD code to perform a turbulent simulation (using a kε model) of the airflow on the front and rear wings of a Formula Mazda car with different angles of attack and the effect of the ground on the front wing. Results are presented graphically, showing pressure and velocity distributions and lift (Cl) and drag coefficients (Cd) for the different cases. It was shown that the ground effect has a marked effect on the Cl and that the angle of attack has a significant effect on the lift and drag coefficients, and it was shown that an angle of 12 below the horizontal seems to indicate stalling conditions. It is suggested that this information, along with experimental validation, can be valuable for improving the optimum handling of these Formula Mazda race cars.  相似文献   
143.
The effect of various reduced frequencies has been examined for an oscillating aspect ratio 10 NACA 0015 wing. An unsteady, compressible three‐dimensional (3D) Navier–Stokes code based on Beam and Warming algorithm with the Baldwin–Lomax turbulence model has been used. The code is validated for the study against published experimental data. The 3D unsteady flow field is simulated for reduced frequency values of 0.1, 0.2 and 0.3 for a fixed mean angle of attack position and fixed amplitude. The type of motion is sinusoidal harmonic. The force coefficients, pressure distributions and flow visualization show that at the given conditions the flow remains attached to the wing surface even at high angles of attack with no clear separation or typical light‐to‐deep category of dynamic stall. Increased magnitude of hysteresis and higher gradients are seen at higher reduced frequencies. The 3D effects are even found at midspan locations. In addition, the rate of decrease in lift near the wing tips compared with the wing root is not much like in the static cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
144.
The ground vehicle mine blast mitigation problem represents a research topic that has recently been generating a very high level of interest and activity. Many aspects of the physics of the problem have been extensively researched. One area that has been neglected, however, is that aspect of the blast threat that relates to the rheology and flow, subsequent to ignition of the explosive, of the relatively energetic mixture of air and soil, sometimes referred to as ejecta. Methods developed for the study of fluidized beds that are used in, e.g. the chemical and power generation process industries, were adapted in order to more clearly define the rheology of air–glass bead mixtures and also of air–soil mixtures that comprise the ejecta. Continuity and momentum balance equations developed for fluidized beds were adapted, using physical properties of glass beads and soils, into a form relates to the properties of mine blast ejecta. These equations were then discretized and solved, for a relatively simple geometry, in order to validate the model and gain a general sense of the flow behavior of particle–air blends. Parametric studies were performed to estimate the variation of the rheology of the air–particle mixtures as a function of the particle diameter and the sphericity of the particles. Finally, the flow properties of a couple of real soils were investigated via application of the two‐phase flow model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
145.
建立了两段式气流床煤气化炉内气固两相流动的三维计算流体力学(CFD)模型,将气体视为连续介质,在Euler坐标系下考察气相的运动;将颗粒视为离散体系,在Lagrange坐标系下研究颗粒的运动。利用所建CFD模型对基本设计尺寸和操作条件下的两段式气流床煤气化炉内气固两相流动进行了模拟,给出了两段式气流床煤气化炉内的气固两相流动的规律和颗粒的分布规律。在此基础上,针对不同的结构(喉口直径变化)和不同的操作条件(两段气固进料量变化)进行了一系列的模拟比较。结果表明,喉口直径的变化对于炉内气固两相流动及颗粒分布有重要影响。随着喉口直径减小,喉口附近区域的气相回流增强,颗粒运动轨线变得更加曲折,颗粒分布发生明显变化。两段气固流量的改变可以明显改变炉内气固流动,随着一段反应区的气固流量增加和二段反应区气固流量减小,一段反应区内的气相回流更加显著, 二段反应区气相回流减弱,颗粒螺旋上升运动增强,反应器边壁处颗粒浓度增大,颗粒沉积现象减弱。  相似文献   
146.
The role of particle injection velocity in influencing the nature of alumina coatings obtained by plasma spraying was studied. Previously reported process chart obtained by computational fluid dynamics (CFD) study on the particle states of alumina with respect to particle injection velocity and size was verified experimentally. For this purpose, alumina particles of three different size ranges with a mean size of 25, 40, and 76 m were subjected to different injection velocities. The coating obtained was analyzed for cross-sectional microstructure and thickness by optical microscopy. In addition, the role of particle injection velocity and size in influencing the coating-deposition efficiency was studied. The experimental results agreed well with the CFD results, which had indicated the dependence of particle trajectory in the plasma plume on the particle injection velocity and size leading to the changes in the extent of melting. While a higher coating thickness and deposition efficiency was obtained with 25-m particles, with further increase in particle size, a reverse trend was observed. This was attributed to the changes in heat-transfer characteristics of the particles with size, which governed the coating buildup and deposition efficiency.  相似文献   
147.
Unbalanced coal/air flow in the pipe systems of coal-fired power plants will lead to non-uniform combustion in the furnace, and hence a overall lower efficiency of the boiler. A common solution to this problem is to put orifices in the pipe systems to balance the flow. It is well known that if the orifices are sized to balance clean air flow to individual burners connected to a pulverizer, the coal/air flow would still be unbalanced and vice versa. However, the current power industry practice throughout the world is to size orifices for balancing the clean air flow and accept the resulting imbalance in coal/air flow. Field tests are mostly conducted to verify a balanced clean air flow.  相似文献   
148.
This paper describes a central difference scheme for the prediction of flows with an interface. The interface is captured rather than tracked and the key to the current approach is a correction to the hydrostatic pressure. The correction enables the scheme to evaluate pressures at cell faces in a consistent manner so that the source term in the equations is correctly balanced at the interface and on non‐equispaced meshes. This prevents the development of large errors in the solution, which can lead to the divergence of the numerical scheme. The current approach allows interface flows to be calculated by a simple modification of existing central difference codes. Results for a number of test cases are presented, with comparisons made with both experimental data and other numerical solutions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
149.
The computation of three-dimensional viscous flows on complex geometries requiring distorted meshes is of great interest. This paper presents a finite volume solver using a quadratic reconstruction of the unknowns for the advective fluxes computation, and a conservative and consistent discretization of the diffusive terms, based on an extended version of the Coirier's diamond path. A fully implicit time integration procedure is employed with a preconditioned matrix-free GMRES solver.  相似文献   
150.
A class of vector-parallel schemes for solution of steady compressible or incompressible viscous flow is developed and performance studies carried out. The algorithms employ an artificial transient treatment that permits rapid integration to a steady state. In the present work a four-stage explicit Runge-Kutta scheme employing variable local step size is utilized for the ODE system integration. The RK-4 scheme is restructured to allow vectorization and enhance concurrency in the calculation for a streamfunction-vorticity formulation of the flow problem. The parameters of the resulting RK scheme can be selected to accelerate convergence of the RK recursion. Four main procedures are considered which permit vector-parallel solution: a Jacobi update, a hybrid of the Jacobi and Gauss-Seidel method, red-black ordering and domain decomposition. Numerical performance studies are conducted with a representative viscous incompressible flow calculation. Results indicate that a scheme involving domain decomposition with a Gauss-Seidel type of update for the RK four-stage scheme is most effective and provides performance in excess of 8 Gflops on the Cray C-90.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号