首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1371篇
  免费   37篇
  国内免费   24篇
化学   1144篇
晶体学   1篇
力学   41篇
综合类   1篇
数学   67篇
物理学   178篇
  2024年   2篇
  2023年   21篇
  2022年   45篇
  2021年   30篇
  2020年   30篇
  2019年   27篇
  2018年   21篇
  2017年   25篇
  2016年   44篇
  2015年   38篇
  2014年   41篇
  2013年   76篇
  2012年   76篇
  2011年   113篇
  2010年   56篇
  2009年   88篇
  2008年   63篇
  2007年   87篇
  2006年   89篇
  2005年   61篇
  2004年   70篇
  2003年   50篇
  2002年   42篇
  2001年   17篇
  2000年   26篇
  1999年   11篇
  1998年   14篇
  1997年   29篇
  1996年   33篇
  1995年   13篇
  1994年   7篇
  1993年   14篇
  1992年   4篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   4篇
  1976年   9篇
  1975年   3篇
  1973年   1篇
排序方式: 共有1432条查询结果,搜索用时 15 毫秒
101.
本文采用溶胶-凝胶方法合成SiO_2溶胶,制备了8-羟基喹啉改性的有序介孔SiO_2涂层毛细管,建立了毛细管微萃取-电感耦合等离子体质谱(CME-ICP-MS)在线联用技术分析铝形态的新方法.选择游离态铝和Al-柠檬酸络合物为不同铝形态的代表物,详细探讨了不同实验参数对铝形态分离的影响.结果表明:8-羟基喹啉改性的有序介孔SiO_2涂层毛细管在pH为5.0~8.0的范围内可以有效地分离试样中的稳定态单核铝(柠檬酸铝)和非稳定态无机单核铝(游离态铝).方法的富集倍数为10,检出限为0.34 ng·mL~(-1).该法应用于湖水、池塘水和长江水中铝的组形态分析,所得结果与8-羟基喹啉负载硅胶微柱分离所得结果吻合很好.  相似文献   
102.
The mechanical properties of Mater-Bi® are, in general, not adequate for certain applications and the addition of a filler is therefore necessary. Among the different fillers, natural fibres are particularly interesting because they potentially allow improving the performance of the material without compromising its biodegradability.In order to improve the basic mechanical properties of a Mater-Bi grade and to obtain a new, fully biodegradable material, wood flour based composites were prepared by different processing methods. To simulate actual and not laboratory bacterial attack on the prepared materials, in this work we studied the biodegradation of the composites in a real active sewage sludge reactor. In particular, the biodegradation rates were investigated with reference to different pre-treatments of the materials and different environmental conditions (summer and winter). The results showed that wood flour enhances the biodegradability of the materials. The results indicated also strong relationships between the surface roughness and the biodegradation rates (in particular, higher roughness leads to wider bacterial attack). The different processing techniques had direct effects on the overall biodegradation rates. In particular, when higher smoothness and packing is achieved, the biodegradation rate is lower. The mechanical analysis indicated that adding wood flour to Mater-Bi has positive effects on the elastic modulus, but when the bacterial attack becomes critical, a general sudden drop of the mechanical properties is observed.  相似文献   
103.
Biodegradation of synthetic polymers is an important property that is used in many applications. Evaluation of the extent of biodegradation has used different methods in recent years. For each environmental compartment, different approaches have to be made in order to obtain valuable data on biodegradability.This review describes validated and accepted methods based on standardized biodegradation tests, analytical tests, enzymatic tests or tests of physical properties to evaluate the biodegradability of synthetic polymers for different types of environmental compartments (e.g., soil, compost or aqueous media).Part II of this review will subsequently report on the environmental biodegradation of different groups of synthetic polymers.  相似文献   
104.
When tin is to be determined in such a complex matrix like aqua regia extracts of environmental samples by electrothermal atomic absorption spectrometry (ETAAS), spectral interferences occur when deuterium-lamp (D2) background correction is used, even using high pyrolysis temperature of 1400 °C achieved with palladium with citric acid chemical modifier. We have found that the further addition of NH4F to palladium with citric acid chemical modifier is essential for overcoming the above-mentioned problems for which aluminium oxide is most probably responsible. It is supposed, that NH4F enables volatilization of the alumina matrix formed by hydrolysis from the chloride salt and interfering in a gas phase via the formation of AlF3 which could be, in contrast to aluminium oxide, removed from the graphite furnace during the pyrolysis stage. Using the proposed chemical modifier, the direct and accurate determination of Sn in aqua regia extracts from rocks, soils and sediments is possible even when using matrix free standard solutions. This presumption was confirmed by the analysis of certified reference samples and by the comparison with inductively coupled plasma time of flight mass spectrometry (ICP-TOFMS) method. Characteristic mass and LOD value for the original sample (10-μL aliquots of sample) was 17 pg and 0.055 μg g−1, respectively.  相似文献   
105.
A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ng mL−1 and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n = 5, C = 2 ng mL−1), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.  相似文献   
106.
This paper describes a preconcentration method for Hg2+ and MeHg+ in water samples using sodium diethyldithiocarbamate immobilized in polyurethane foam (PU-NaDDC) and an extraction method for several mercury species in sediment samples, including MeHg+, EtHg+ and PhHg+, which is simple, rapid, and uses a single organic solvent. Separation and measurement were done by high-performance liquid chromatography on-line with inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Initially, the test of recovery was applied using procedures compatible with HPLC. Under the optimum extraction conditions, recoveries of 96.7, 96.3 and 97.3% were obtained for MeHg+, EtHg+, and PhHg+, respectively, from n = 4 spiked sediment samples. This study also demonstrates that the combination of solid-phase extraction on PU-NaDDC with HPLC separation and ICP-MS detection is an effective preconcentration procedure for simultaneous measurement of Hg2+ and MeHg+ at ultra-trace levels in water samples. The application of the proposed procedure to the determination of mercury species in drinking water sample was investigated. The proposed method clearly gave satisfactory average recoveries between 93.7 and 101.5%.  相似文献   
107.
A sensitive method was developed for the trace determination of six tetracyclines and ten of their degradation products in influent, effluent, and river waters using liquid chromatography–electrospray tandem mass spectrometry detection, combined with Oasis hydrophilic–lipophilic balance (HLB) cartridge extraction and Oasis mixed-mode strong anion exchange (MAX) cartridge cleanup. Tetracyclines and their products were separated by liquid chromatography in 9.5 min, and the instrument detection limits were generally between 0.03 and 0.1 μg/L except for minocycline (0.5 μg/L). The chromatograms were improved through the MAX cleanup and no apparent matrix effect was found. The recoveries of all the target compounds except for 4-epianhydrochlortetracycline and anhydrochlortetracycline (34–52%) were 75–120% for influent, 61–103% for effluent, and 64–113% for river waters. The method detection limits (MDLs) of the analytes varied in the range of 0.8–17.5 ng/L in all studied matrices. The method was applied for the determination of tetracyclines and their products in a sewage treatment plant (STP) and surface waters in Beijing, China. Oxytetracycline (3.8–72.5 ng/L), tetracycline (1.9–16.5 ng/L), and five products including 4-epitetracycline, 4-epioxytetracycline, isochlortetracycline, anhydrotetracycline, and 4-epianhydrochlortetracycline (5.7–25.3 ng/L) were detected in wastewater, while only oxytetracycline and tetracycline (2.2 and 2.1 ng/L) were detected in surface water samples.  相似文献   
108.
“Total petroleum hydrocarbons” (TPHs) or “petroleum hydrocarbons” (PHCs) are one of the most widespread soil pollutants in Canada, North America, and worldwide. Clean-up of PHC-contaminated soils and sediments costs the Canadian economy hundreds of million of dollars annually. Much of this activity is driven by the need to meet regulated levels of PHC in soil. These PHC values are legally required to be assessed using standard methods. The method most commonly used in Canada, specified by the Canadian Council of Ministers of the Environment (CCME), measures the total hydrocarbon concentrations in a soil by carbon range (Fraction 1: C6–C10; Fraction 2: C10–C16, Fraction 3: C16–C34: and Fraction 4: C34+). Using the CCME method, all of the materials extractible by a mixture of 1:1 hexane:acetone are considered to be petroleum hydrocarbon contaminants. Many hydrocarbon compounds and other extractible materials in soil, however, may originate from non-petroleum sources. Biogenic organic compounds (BOCs) is a general term used to describe a mixture of organic compounds, including alkanes, sterols and sterones, fatty acids and fatty alcohols, and waxes and wax esters, biosynthesized by living organisms. BOCs are also produced during the early stages of diagenesis in recent aquatic sediments. BOC sources could include vascular plants, algae, bacteria and animals. Plants and algae produce BOCs as protective wax coating that are released back into the sediment at the end of their life cycle. BOCs are natural components of thriving plant communities. Many solvent-extraction methods for assessing soil hydrocarbons, however, such as the CCME method, do not differentiate PHCs from BOCs. The naturally occurring organics present in soils and wet sediments can be easily misidentified and quantified as regulated PHCs during analysis using such methods. In some cases, biogenic interferences can exceed regulatory levels, resulting in remediation of petroleum impacts that are not actually present. Consequently, reliance on these methods can trigger unnecessary and costly remediation, while also wasting valuable landfill space. Therefore, it is critically important to develop new protocols to characterize and differentiate PHCs and BOCs in contaminated sediments. In this study, a new reliable gas chromatography–mass spectrometry (GC–MS) method, in combination with a derivatization technique, for characterization of various biogenic compounds (including biogenic alkanes, sterols, fatty acids and fatty alcohols) and PHCs in the same sample has been developed. A multi-criteria approach has been developed to positively identify the presence of biogenic compounds in soil and sediment samples. More than thirty sediment samples were collected from city stormwater management (SWM) ponds and wetlands across Canada. In these wet sediment samples, abundant biogenic n-alkanes, thirteen biogenic sterols, nineteen fatty carboxylic acids, and fourteen fatty alcohols in a wide carbon range have been positively identified. Both PHCs and BOCs in these samples were quantitatively determined. The quantitation data will be used for assessment of the contamination sites and toxicity risks associated with the CCME Fraction 3 hydrocarbons.  相似文献   
109.
An ultra-high-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method for the determination of 37 pesticides (herbicides, insecticides and fungicides) in environmental and wastewater has been developed. To efficiently combine UHPLC with MS/MS, a fast-acquisition triple quadrupole mass analyzer was used. This analyzer (minimum dwell time, 5 ms) allows acquiring up to three simultaneous transitions in the selected reaction monitoring mode for each compound assuring a reliable identification without resolution or sensitivity losses. A pre-concentration step based on solid-phase extraction using Waters Oasis HLB cartridges (0.2 g) was applied with a 100-fold pre-concentration factor along the whole analytical procedure. The method was validated based on European SANCO guidelines using surface, ground, drinking and treated water (from an urban solid residues treatment plant) spiked at two concentration levels (0.025 and 0.1 μg/L), the lowest having been established as the limit of quantification objective. The method showed excellent sensitivity, with instrumental limits of detection ranging from 0.1 to 7 pg. It was applied to environmental water samples (ground and surface water) as well as to samples of urban solid waste leachates (raw leachate and treated leachate after applying reversed osmosis) collected from a municipal treatment plant. Matrix effects have been studied in the different types of water samples analyzed, and several isotope-labelled internal standards have been evaluated as a way to compensate the signal suppression observed for most of the compounds studied, especially in wastewater samples. As a general remark, only those pesticides which response was corrected using their own isotope-labelled molecule, could be satisfactorily corrected in all type of samples, assuring in this way the accurate quantification in all matrix samples.  相似文献   
110.
We have optimized the analytical parameters of a homemade instrument for the simultaneous measurement of the chlorofluorocarbons CCl2F2 (CFC-12), CCl3F (CFC-11) and C2Cl3F3 (CFC-113) in seawater. Seawater samples are flame sealed into 60 ml glass ampoules avoiding any contact with the atmosphere and stored in cold, dark condition until analysis. In the laboratory, after cracking the ampoule in an enclosed chamber filled with ultra-pure nitrogen, the seawater sample is transferred to a stripping chamber, where ultra-pure nitrogen is used to purge the dissolved CFCs from the seawater. The extracted gases are then cryogenically trapped, subsequently the trap is isolated and heated and the CFCs are transferred by a carrier gas stream into a precolumn and then are separated on a gaschromatographic packed column. To separate adequately CFC-12 from N2O, during the early part of the chromatographic run, the gas stream passes through a molecular sieve, which is then isolated and backflushed. The CFCs are detected on an electron capture detector (63Ni ECD). After a careful choice of the experimental conditions, the performances of the system were evaluated. The detection limits for seawater samples are: 0.0081 pmol kg−1 for CFC-12, 0.0073 pmol kg−1 for CFC-11 and 0.0043 pmol kg−1 for CFC-113. The reproducibility of replicate samples lies within 5% for the three CFCs. The system has been successfully employed for CFC measurements in seawater samples collected in the Ross Sea (Antarctica) in the framework of the Italian Antarctic research project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号